Do you want to publish a course? Click here

The Field Theory Approach to Percolation Processes

59   0   0.0 ( 0 )
 Added by Uwe C. T\\\"auber
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed respectively by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d_c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder.



rate research

Read More

We discuss attacks and infections at propagating fronts of percolation processes based on the extended general epidemic process. The scaling behavior of the number of the attacked and infected sites in the long time limit at the ordinary and tricritical percolation transitions is governed by specific composite operators of the field-theoretic representation of this process. We calculate corresponding critical exponents for tricritical percolation in mean-field theory and for ordinary percolation to 1-loop order. Our results agree well with the available numerical data.
We describe a percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Tissues are considered as structures made of regular healthy, senescent, dead (apoptotic) cells, and studied dynamically, with the ongoing processes including regular cell division to fill vacant sites left by dead cells, healthy cells becoming senescent or dying, and other processes. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. An illustrative application of the developed theoretical modeling approach is reported, confirming recent experimental findings that inhibition of senescence can lead to extended lifespan.
We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissues connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cells infinite cluster still exits.
219 - Bing-Sui Lu 2017
We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the method of statistical field theory. This approach enables us to relate the coefficients $A$, $B$, $C$, $L_1$ and $L_2$ of the Landau-de Gennes free energy for the isotropic-nematic phase transition to the parameters of a molecular model of uniaxial nematics, which we take to be a lattice gas model of nematogenic molecules interacting via a short-ranged potential. We obtain general constraints on the temperature and volume fraction of nematogens for the Landau-de Gennes theory to be stable against molecular orientation fluctuations at quartic order. In particular, for the case of a fully occupied lattice, we compute the values of the isotropic-nematic transition temperature and the order parameter discontinuity predicted by (i) a continuum approximation of the nearest-neighbor Lebwohl-Lasher model and (ii) a Lebwohl-Lasher-type model with a nematogenic interaction of finite range. We find that the predictions of (i) are in reasonably good agreement with known results of MC simulation.
113 - Uwe C. Tauber 1997
We study a hierarchy of directed percolation (DP) processes for particle species A, B, ..., unidirectionally coupled via the reactions A -> B, ... When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents beta^{(k)} which are markedly reduced at each hierarchy level k >= 2. We compute the fluctuation corrections to beta^{(2)} to O(epsilon = 4-d) using field-theoretic renormalization group techniques. Monte Carlo simulations are employed to determine the new exponents in dimensions d <= 3.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا