Do you want to publish a course? Click here

Structural, transport, and thermal properties of single crystalline type-VIII clathrate Ba8Ga16Sn30

98   0   0.0 ( 0 )
 Added by Marcos A. Avila
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the electrical resistivity, Hall coefficient, thermoelectric power, specific heat, and thermal conductivity on single crystals of the type-VIII clathrate Ba8Ga16Sn30 grown from Sn-flux. Negative S and R_H over a wide temperature range indicate that electrons dominate electrical transport properties. Both rho(T) and S(T) show typical behavior of a heavily doped semiconductor. The absolute value of S increases monotonically to 243 uV/K with increasing temperature up to 550 K. The large S may originate from the low carrier concentration n=3.7x10^19 cm^(-3). Hall mobility u_H shows a maximum of 62 cm^2/Vs around 70 K. The analysis of temperature dependence of u_H suggests a crossover of dominant scattering mechanism from ionized impurity to acoustic phonon scattering with increasing temperature. The existence of local vibration modes of Ba atoms in cages composed of Ga and Sn atoms is evidenced by analysis of experimental data of structural refinement and specific heat, which give an Einstein temperature of 50 K and a Debye temperature of 200 K. This local vibration of Ba atoms should be responsible for the low thermal conductivity (1.1 W/m K at 150 K). The potential of type-VIII clathrate compounds for thermoelectric application is discussed.



rate research

Read More

We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-crystal X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5pm2.5) degrees at 300 K and (2.5pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.
We studied the properties of the antiferromagnetic (AFM) UNi0.5Sb2 (TN approx 161 K) compound in Sb-flux grown single crystals by means of measurements of neutron diffraction, magnetic susceptibility ({chi}), specific heat (Cp), thermopower (S), thermal conductivity ({kappa}), linear thermal expansion ({Delta}L/L), and electrical resistivity ({rho}) under hydrostatic pressures (P) up to 22 kbar. The neutron diffraction measurements revealed that the compound crystallizes in the tetragonal P42/nmc structure, and the value of the U-moments yielded by the histograms at 25 K is approx 1.85 pm 0.12 {mu}B/U-ion. In addition to the features in the bulk properties observed at TN, two other hysteretic features centered near 40 and 85 K were observed in the measurements of {chi}, S, {rho}, and {Delta}L/L. Hydrostatic pressure was found to raise TN at the rate of approx 0.76 K/kbar, while suppressing the two low temperature features. These features are discussed in the context of Fermi surface and hybridization effects.
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi2 single crystals are presented. The Eu{+2} spins-7/2 in EuMg2Bi2 exhibit an antiferromagnetic (AFM) transition at a temperature TN = 6.7 K, as previously reported. By analyzing the anisotropic magnetic susceptibility chi data below TN in terms of molecular-field theory (MFT), the AFM structure is inferred to be a c-axis helix, where the ordered moments in the hexagonal ab-plane layers are aligned ferromagnetically in the ab plane with a turn angle between the moments in adjacent moment planes along the c axis of about 120 deg. The magnetic heat capacity exhibits a lambda anomaly at TN with evidence of dynamic short-range magnetic fluctuations both above and below TN. The high-T limit of the magnetic entropy is close to the theoretical value for spins-7/2. The in-plane electrical resistivity rho(T) data indicate metallic character with a mild and disorder-sensitive upturn below Tmin = 23 K. An anomalous rapid drop in rho(T) on cooling below TN as found in zero field is replaced by a two-step decrease in magnetic fields. The rho(T) measurements also reveal an additional transition below TN in applied fields of unknown origin that is not observed in the other measurements and may be associated with an incommensurate to commensurate AFM transition. The dependence of TN on the c-axis magnetic field Hperp was derived from the field-dependent chi(T), Cp(T), and rho(T) measurements. This TN(Hperp) was found to be consistent with the prediction of MFT for a c-axis helix with S = 7/2 and was used to generate a phase diagram in the Hperp-T plane.
95 - M. A. Avila , D. Huo , T. Sakata 2005
We have grown single crystals of the type-VIII intermetallic clathrate Ba8Ga16Sn30 from both Sn and Ga flux, evaluated their compositions through electron microprobe analysis and studied their transport properties through measurements on temperature dependent resistivity, thermopower and Hall coefficient. Crystals grown in Sn flux show n-type carriers and those from Ga flux show p-type carriers, whereas all measured compositions remain very close to the stoichiometric 8:16:30 proportion of Ba:Ga:Sn, expected from charge-balance principles. Our results indicate a very high sensitivity of the charge carrier nature and density with respect to the growth conditions, leading to relevant differences in transport properties which point to the importance of tuning this material for optimal thermoelectric performance.
Magnetization, heat capacity, electrical resistivity, thermoelectric power, and Hall effect have been investigated on single-crystalline Ce_2PdSi_3. This compound is shown to order antiferromagnetically below Neel temperature (T_N) ~3 K. The Sommerfeld coefficient far below T_N is found to be about 110 mJ/K^2 mol Ce, which indicates the heavy-fermion character of this compound. The transport and magnetic properties exhibit large anisotropy with an interplay between crystalline-electric-field (CEF) and Kondo effects. The sign of thermoelectric power is opposite for different directions at high temperatures and the ordinary Hall coefficient is anisotropic with opposite sign for different geometries, indicating the anisotropic Fermi surface. The CEF analysis from the temperature dependence of magnetic susceptibility suggests that the ground state is |+/-1/2>. The first and the second excited CEF doublet levels are found to be located at about 30 and 130 K, respectively. The Kondo temperature is estimated to be the same order as T_N, indicating the presence of a delicate competition between the Kondo effect and magnetic order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا