Do you want to publish a course? Click here

Nodal liquid and s-wave superconductivity in transition metal dichalcogenides

179   0   0.0 ( 0 )
 Added by Bruno Barboza Uchoa
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the physical properties of a unified microscopic theory for the coexistence of superconductivity and charge density waves in two-dimensional transition metal dichalcogenides. In the case of particle-hole symmetry the elementary particles are Dirac fermions at the nodes of the charge density wave gap. When particle-hole symmetry is broken electron (hole) pockets are formed around the Fermi surface. The superconducting ground state emerges from the pairing of nodal quasi-particles mediated by acoustic phonons via a piezoelectric coupling. We calculate several properties in the s-wave superconducting phase, including specific heat, ultra-sound absorption, nuclear magnetic relaxation, thermal, and optical conductivities. In the case with particle-hole symmetry, the specific heat jump at the transition deviates strongly from ordinary superconductors. The nuclear magnetic response shows an anomalous anisotropy due to the broken time-reversal symmetry of the superconducting gap, induced by the triple charge density wave state. The loss of lattice inversion symmetry in the charge density wave phase leads to anomalous coherence factors in the optical conductivity and to the appearance of an absorption edge at the optical gap energy. Furthermore, optical and thermal conductivities display anomalous peaks in the infrared when particle-hole symmetry is broken.



rate research

Read More

In this work, we review the results of several recent works on the experimental and theoretical studies of monolayer superconducting transition metal dichalcogenides (TMD) such as superconducting MoS2 and NbSe2. We show how the strong Ising spin-orbit coupling (SOC), a special type of SOC which pins electron spins to out-of-plane directions, can affect the superconducting properties of the materials. Particularly, we discuss how the in-plane upper critical fields of the materials can be strongly enhanced by Ising SOC and how TMD materials can be used to engineer topological superconductors and nodal topological superconductors which support Majorana fermions.
357 - Gilad Margalit , Erez Berg , 2021
We study possible superconducting states in transition metal dichalcogenide (TMD) monolayers, assuming an on-site pairing potential that includes both intra- and inter-orbital terms. We find that if the mirror symmetry with respect to the systems plane is broken (e.g., by a substrate), this type of pairing can give rise to unconventional superconductivity, including time-reversal-invariant nodal and fully gapped topological phases. Using a multi-orbital renormalization group procedure, we show how these phases may result from the interplay between the local Coulomb repulsion, Hunds rule coupling, and phonon-mediated attraction. In particular, for a range of interaction parameters, the system transitions from a trivial phase to a nodal phase and finally to a gapped topological phase upon increasing the strength of the mirror symmetry breaking term.
Nuclear quadrupole resonance measurements were performed on the heavy fermion superconductor Ce2PdIn8. Above the Kondo coherence temperature T_coh simeq 30K, the spin-lattice relaxation rate 1/T_1 is temperature independent, whereas at lower temperatures, down to the onset of superconductivity at T_c = 0.64K, it is nearly proportional to T^{1/2}. Below T_c, 1/T_1 shows no coherence peak and decreases as T^3 down to 75mK. All these findings indicate that Ce2PdIn8 is close to the antiferromagnetic quantum critical point, and the superconducting state has an unconventional character with line nodes in the superconducting gap.
The Mott transition is one of the fundamental issues in condensed matter physics, especially in the system with antiferromagnetic long-range order. However the Mott transition in quantum spin liquid (QSL) systems without long-range order is rare. Here we report the observation of the pressure-induced insulator to metal transition followed by the emergence of superconductivity in the QSL candidate NaYbSe2 with triangular lattice of 4f Yb$_3^+$ ions. Detail analysis of transport properties at metallic state shows an evolution from non-Fermi liquid to Fermi liquid behavior when approaching the vicinity of superconductivity. An irreversible structure phase transition occurs around 11 GPa is revealed by the X-ray diffraction. These results shed light on the Mott transition and superconductivity in the QSL systems.
We performed 121/123Sb-nuclear quadrupole resonance (NQR) measurements on the superconducting (SC) line-nodal material CaSb2 in order to investigate electronic properties in the normal and SC states from a microscopic point of view. In the normal state, the nuclear spin-lattice relaxation rate 1/T1 for the Sb(1) site, which is responsible for the line-nodal parts, is approximately proportional to temperature, indicating the conventional Fermi liquid state. From comparison with band structure calculations, it is considered that the NQR properties related to the line-nodal character are hidden because the conventional behavior originating from Fermi-surface parts away from the nodes is dominant. In the SC state, a clear coherence peak just below the transition temperature and an exponential decrease at lower temperatures were observed in 1/T1. These results strongly suggest that conventional s-wave superconductivity with a full gap is realized in CaSb2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا