Do you want to publish a course? Click here

Theory of Multi-Orbital Topological Superconductivity in Transition Metal Dichalcogenides

358   0   0.0 ( 0 )
 Added by Gilad Margalit
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study possible superconducting states in transition metal dichalcogenide (TMD) monolayers, assuming an on-site pairing potential that includes both intra- and inter-orbital terms. We find that if the mirror symmetry with respect to the systems plane is broken (e.g., by a substrate), this type of pairing can give rise to unconventional superconductivity, including time-reversal-invariant nodal and fully gapped topological phases. Using a multi-orbital renormalization group procedure, we show how these phases may result from the interplay between the local Coulomb repulsion, Hunds rule coupling, and phonon-mediated attraction. In particular, for a range of interaction parameters, the system transitions from a trivial phase to a nodal phase and finally to a gapped topological phase upon increasing the strength of the mirror symmetry breaking term.



rate research

Read More

In this work, we review the results of several recent works on the experimental and theoretical studies of monolayer superconducting transition metal dichalcogenides (TMD) such as superconducting MoS2 and NbSe2. We show how the strong Ising spin-orbit coupling (SOC), a special type of SOC which pins electron spins to out-of-plane directions, can affect the superconducting properties of the materials. Particularly, we discuss how the in-plane upper critical fields of the materials can be strongly enhanced by Ising SOC and how TMD materials can be used to engineer topological superconductors and nodal topological superconductors which support Majorana fermions.
178 - B. Uchoa , G. G. Cabrera , 2004
We explore the physical properties of a unified microscopic theory for the coexistence of superconductivity and charge density waves in two-dimensional transition metal dichalcogenides. In the case of particle-hole symmetry the elementary particles are Dirac fermions at the nodes of the charge density wave gap. When particle-hole symmetry is broken electron (hole) pockets are formed around the Fermi surface. The superconducting ground state emerges from the pairing of nodal quasi-particles mediated by acoustic phonons via a piezoelectric coupling. We calculate several properties in the s-wave superconducting phase, including specific heat, ultra-sound absorption, nuclear magnetic relaxation, thermal, and optical conductivities. In the case with particle-hole symmetry, the specific heat jump at the transition deviates strongly from ordinary superconductors. The nuclear magnetic response shows an anomalous anisotropy due to the broken time-reversal symmetry of the superconducting gap, induced by the triple charge density wave state. The loss of lattice inversion symmetry in the charge density wave phase leads to anomalous coherence factors in the optical conductivity and to the appearance of an absorption edge at the optical gap energy. Furthermore, optical and thermal conductivities display anomalous peaks in the infrared when particle-hole symmetry is broken.
87 - Hanan Dery 2016
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe$_2$ and WS$_2$ have shown that while the low-temperature photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self energy includes a moderate redshift due to exchange, and most importantly, a correlation-induced virtual state in the band-gap. The latter sheds light on the origin of the luminescence in monolayer WSe$_2$ and WS$_2$ in the presence of pronounced many-body interactions.
In this work, we provide an effective model to evaluate the one-electron dipole matrix elements governing optical excitations and the photoemission process of single-layer (SL) and bilayer (BL) transition metal dichalcogenides. By utilizing a $vec{k} cdot vec{p}$ Hamiltonian, we calculate the photoemission intensity as observed in angle-resolved photoemission from the valence bands around the $bar{K}$-valley of MoS$_2$. In SL MoS$_2$ we find a significant masking of intensity outside the first Brillouin zone, which originates from an in-plane interference effect between photoelectrons emitted from the Mo $d$ orbitals. In BL MoS$_2$ an additional inter-layer interference effect leads to a distinctive modulation of intensity with photon energy. Finally, we use the semiconductor Bloch equations to model the optical excitation in a time- and angle-resolved pump-probe photoemission experiment. We find that the momentum dependence of an optically excited population in the conduction band leads to an observable dichroism in both SL and BL MoS$_2$.
We investigate proximity-induced superconductivity in monolayers of transition metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay of magnetism and superconductivity, covering the entire spectrum of possibilities to be symmetric or antisymmetric with respect to the valley and spin degrees of freedom, as well as even or odd in frequency. More specifically, when a conventional emph{s}-wave superconductor with singlet Copper pairs is tunnel-coupled to the TMD layer, both spin-singlet and triplet pairings between electrons from the same and opposite valleys arise due to the combined effects of intrinsic spin-orbit coupling and a magnetic-substrate-induced exchange field. As a key finding, we reveal the existence of an exotic even-frequency triplet pairing between equal-spin electrons from different valleys, which arises whenever the spin orientations in the two valleys are noncollinear. All types of superconducting order turn out to be highly tunable via straightforward manipulation of the external exchange field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا