Do you want to publish a course? Click here

Band structure of LaB6 by an algorithm for filtering reconstructed electron-positron momentum densities

116   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new method (NM) for filtering three-dimensional reconstructed densities is proposed. The algorithm is tested with simulated spectra and employed to study the electronic structure of the rare-earth compound LaB6. For this system, momentum densities are reconstructed from theoretical and experimental two-dimensional angular correlation of electron-positron annihilation radiation (2D ACAR) spectra. The experimental results are in good agreement with the band structure calculated with the full-potential linearized augmented-plane-wave (FLAPW) method within the local-density approximation (LDA), apart from the detection of small electron pockets in the 15th band. It is also shown that, unlike the electron-positron enhancement, the electron-electron correlations affect noticeably the momentum density.



rate research

Read More

99 - T. Fujii , Y. Nakai , Y. Akahama 2019
Two-dimensional layered semiconductor black phosphorus (BP), a promising pressure induced Dirac system as predicted by band structure calculations, has been studied by $^{31}$P-nuclear magnetic resonance. Band calculations have been also carried out to estimate the density of states $D(E)$. The temperature and pressure dependences of nuclear spin lattice relaxation rate $1/T_1$ in the semiconducting phase are well reproduced using the derived $D(E)$, and the resultant pressure dependence of semiconducting gap is in good accordance with previous reports, giving a good confirmation that the band calculation on BP is fairly reliable. The present analysis of $1/T_1$ data with the complemental theoretical calculations allows us to extract essential information, such as the pressure dependences of $D(E)$ and chemical potential, as well as to decompose observed $1/T_1$ into intrinsic and extrinsic contributions. An abrupt increase in $1/T_1$ at 1.63GPa indicates that the semiconducting gap closes, resulting in an enhancement of conductivity.
Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.
The effect of temperature controlled annealing on the confined valence electron states in CdSe nanocrystal arrays, deposited as thin films, was studied using two-dimensional angular correlation of annihilation radiation (2D-ACAR). A reduction in the intensity by ~35% was observed in a feature of the positron annihilation spectrum upon removal of the pyridine capping molecules above 200 degrees Celsius in a vacuum. This reduction is explained by an increased electronic interaction of the valence orbitals of neighboring nanocrystals, induced by the formation of inorganic interfaces. Partial evaporation of the nanoporous CdSe layer and additional sintering into a polycrystalline thin film was observed at a relatively low temperature of ~486 degrees Celsius.
We have performed a systematic high-momentum-resolution photoemission study on ZrTe$_5$ using $6$ eV photon energy. We have measured the band structure near the $Gamma$ point, and quantified the gap between the conduction and valence band as $18 leq Delta leq 29$ meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the 3D nature of the materials band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe$_5$ is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe$_5$ being a 3D weak topological insulator.
We discuss an efficiency of various band structure algorithms in determining the Fermi surface (FS) of the paramagnetic ErGa3. The linear muffin-tin orbital (LMTO) in the atomic sphere approximation (ASA) method and three full potential (FP) codes: FP-LMTO, FP linear augmented plane wave (FLAPW), and FP local orbitals (FPLO) methods are employed. Results are compared with electron-positron (e-p) momentum densities reconstructed from two dimensional angular correlation of annihilation radiation (2D ACAR). Unexpectedly, none of used modern FP codes is able to give satisfying description of the experimental data that are in perfect agreement with LMTO-ASA results. We suspect that it can be connected with a different choice of the linearization energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا