Do you want to publish a course? Click here

3D nature of ZrTe$_5$ band structure measured by high-momentum-resolution photoemission spectroscopy

138   0   0.0 ( 0 )
 Added by Hongyu Xiong
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a systematic high-momentum-resolution photoemission study on ZrTe$_5$ using $6$ eV photon energy. We have measured the band structure near the $Gamma$ point, and quantified the gap between the conduction and valence band as $18 leq Delta leq 29$ meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the 3D nature of the materials band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe$_5$ is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe$_5$ being a 3D weak topological insulator.



rate research

Read More

We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe, and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p-bands. Our study reveals the conjectured complex Fermi surface structure near the L-points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5eV below the gap, corresponding to a carrier density of p =1.14x10^{21} cm^{-3} or 7.2x10^{-2} holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions.
The electronic band structure of complex nanostructured semiconductors has a considerable effect on the final electronic and optical properties of the material and, ultimately, on the functionality of the devices incorporating them. Valence electron energy-loss spectroscopy (VEELS) in the transmission electron microscope (TEM) provides the possibility of measuring this property of semiconductors with high spatial resolution. However, it still represents a challenge for narrow-bandgap semiconductors, since an electron beam with low energy spread is required. Here we demonstrate that by means of monochromated VEELS we can study the electronic band structure of narrow-gap materials GaSb and InAs in the form of heterostructured nanowires, with bandgap values down to 0.5 eV, especially important for newly developed structures with unknown bandgaps. Using complex heterostructured InAs-GaSb nanowires, we determine a bandgap value of 0.54 eV for wurtzite InAs. Moreover, we directly compare the bandgaps of wurtzite and zinc-blende polytypes of GaSb in a single nanostructure, measured here as 0.84 and 0.75 eV, respectively. This allows us to solve an existing controversy in the band alignment between these structures arising from theoretical predictions. The findings demonstrate the potential of monochromated VEELS to provide a better understanding of the band alignment at the heterointerfaces of narrow-bandgap complex nanostructured materials with high spatial resolution. This is especially important for semiconductor device applications where even the slightest variations of the electronic band structure at the nanoscale can play a crucial role in their functionality.
The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few and single layer forms of ReS$_2$ is of particular interest, due to its comparatively weak inter-planar interaction. However, the degree of inter-layer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS$_2$ using high resolution angle resolved photoemission spectroscopy (ARPES). We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 $m_e$) than along them (1.6 $m_e$), in good agreement with density functional theory calculations. An appreciable inter-plane interaction results in an experimentally-measured difference of ~100-200 meV between the valence band maxima at the Z point (0,0,1/2) and the $Gamma$ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at $Gamma$, implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the direct or indirect gap nature of this material.
Three dimensional (3D) topological Dirac materials are under intensive study recently. The layered compound ZrTe$_5$ has been suggested to be one of them by transport and ARPES experiments. Here, we perform infrared reflectivity measurement to investigate the underlying physics of this material. The derived optical conductivity exhibits linear increasing with frequency below normal interband transitions, which provides the first optical spectroscopic proof of a 3D Dirac semimetal. Apart from that, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be associated with the consequence of lattice parameter shrinking. In addition, an extremely sharp peak shows up in the frequency dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.
165 - Niraj Aryal , Xilian Jin , Q. Li 2020
We use first-principles methods to reveal that in ZrTe$_5$, a layered van der Waals material like graphite, atomic displacements corresponding to five of the six zone-center A$_g$ (symmetry-preserving) phonon modes can drive a topological phase transition from strong to weak topological insulator with a Dirac semimetal state emerging at the transition, giving rise to a Dirac topology surface in the multi-dimensional space formed by the A$_g$ phonon modes. This implies that the topological phase transition in ZrTe$_5$ can be realized with many different settings of external stimuli that are capable of penetrating through the phonon-space Dirac surface without breaking the crystallographic symmetry. Furthermore, we predict that domains with effective mass of opposite signs can be created by laser pumping and will host Weyl modes of opposite chirality propagating along the domain boundaries. Studying phonon-space topology surfaces provides a new route to understanding and utilizing the exotic physical properties of ZrTe$_5$ and related quantum materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا