Do you want to publish a course? Click here

Scaling Behavior of the Portevin-Le Chatelier Effect in an Al-2.5%Mg Alloy

92   0   0.0 ( 0 )
 Added by Parthasarathi Barat
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scaling behavior of the Portevin-Le Chatelier (PLC) effect was studied by deforming Al-2.5%Mg alloy for a wide range of strain rates. To reveal the exact scaling nature, the time series data of true stress vs. time, obtained during deformation, were analyzed by two complementary methods: the finite variance scaling method and the diffusion entropy analysis. From these analyses we could establish that in the entire span of strain rates, PLC effect showed Levy walk property.



rate research

Read More

The complexity of the Portevin-Le Chatelier effect in Al-2.5%Mg polycrystalline samples subjected to uniaxial tensile tests is quantified. Multiscale entropy analysis is carried out on the stress time series data observed during jerky flow to quantify the complexity of the distinct spatiotemporal dynamical regimes. It is shown that for the static type C band, the entropy is very low for all the scales compared to the hopping type B and the propagating type A bands. The results are interpreted considering the time and length scales relevant to the effect.
The scaling behavior of the Portevin-Le Chatelier (PLC) effect is studied by deforming a substitutional alloy, Al-2.5%Mg and an interstitial alloy, low carbon steel (0.15%C, 0.33%Mn, 0.04%P, 0.05%S, 0.15%Si and rest Iron) at room temperature for a wide range of strain rates. To reveal the exact scaling nature, the time series data of true stress vs. time, obtained during the tensile deformation (corrected for drift due to strain hardening by polynomial fitting method), are analyzed by two complementary methods: the standard deviation analysis and the diffusion entropy analysis. From these analyses we could establish that in the entire span of strain rates, PLC effect showed Levy walk type of scaling property.
Tensile tests were carried out by deforming polycrystalline samples of Al-2.5%Mg alloy at four different temperatures in an intermediate strain rate regime of 2x10-4s-1 to 2x10-3s-1. The Portevin-Le Chatelier (PLC) effect was observed throughout the strain rate and temperature region. The mean cumulative stress drop magnitude and the mean reloading time exhibit an increasing trend with temperature which is attributed to the enhanced solute diffusion at higher temperature. The observed stress-time series data were analyzed using the nonlinear dynamical methods. From the analyses, we could establish the presence of deterministic chaos in the PLC effect throughout the temperature regime. The dynamics goes to higher dimension at a sufficiently high temperature of 425K but the complexity of the dynamics is not affected by the temperature.
92 - A. Sarkar , P. Barat 2006
The plastic deformation of dilute alloys is often accompanied by plastic instabilities due to dynamic strain aging and dislocation interaction. The repeated breakaway of dislocations from and their recapture by solute atoms leads to stress serrations and localized strain in the strain controlled tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present work, we analyse the stress time series data of the observed PLC effect in the constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of strain rates at room temperature. The scaling behaviour of the PLC effect was studied using two complementary scaling analysis methods: the finite variance scaling method and the diffusion entropy analysis. From these analyses we could establish that in the entire span of strain rates, PLC effect showed Levy walk property. Moreover, the multiscale entropy analysis is carried out on the stress time series data observed during the PLC effect to quantify the complexity of the distinct spatiotemporal dynamical regimes. It is shown that for the static type C band, the entropy is very low for all the scales compared to the hopping type B and the propagating type A bands. The results are interpreted considering the time and length scales relevant to the effect.
The Portevin-Le Chatelier(PLC) effect has been investigated by deforming Al-2.5%Mg alloy in the strain rate regime where simultaneously two types (type B and type A) of serrations appear in the stress strain curve. Our analysis reveal that in this strain rate regime the entire PLC dynamics for a particular strain rate experiment is governed by a single band which changes its character during the deformation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا