Do you want to publish a course? Click here

Unusual structural tuning of magnetism in cuprate perovskites

114   0   0.0 ( 0 )
 Added by Jorge Iniguez
 Publication date 2004
  fields Physics
and research's language is English
 Authors Jorge Iniguez




Ask ChatGPT about the research

Understanding the structural underpinnings of magnetism is of great fundamental and practical interest. Se_{1-x}Te_{x}CuO_{3} alloys are model systems for the study of this question, as composition-induced structural changes control their magnetic interactions. Our work reveals that this structural tuning is associated with the position of the supposedly dummy atoms Se and Te relative to the super-exchange (SE) Cu--O--Cu paths, and not with the SE angles as previously thought. We use density functional theory, tight-binding, and exact diagonalization methods to unveil the cause of this surprising effect and hint at new ways of engineering magnetic interactions in solids.



rate research

Read More

We have investigated spin and orbital magnetic moments of the Re 5d ion in the double perovskites A2FeReO6 (A = Ba, Sr, Ca) by X-ray magnetic circular dichroism (XMCD) at the Re L(2,3) edges. In these ferrimagnetic compounds an unusually large negative spin and positive orbital magnetic moment at the Re atoms was detected. The presence of a finite spin magnetic moment in a non-magnetic double perovskite as observed in the double perovskite Sr2ScReO6 proves that Re has also a small, but finite intrinsic magnetic moment. We further show for the examples of Ba and Ca that the usually neglected alkaline earth ions undoubtedly also contribute to the magnetism in the ferrimagnetic double perovskites.
263 - S. Kolesnik , B. Dabrowski , 2008
We combine the results of magnetic and transport measurements with neutron diffraction data to construct the structural and magnetic phase diagram of the entire family of SrMn$_{1-x}$Ru$_{x}$O$_3$ ($0 leqslant x leqslant 1$) perovskites. We have found antiferromagnetic ordering of the C type for lightly Ru-substituted materials ($0.06 leqslant x leqslant 0.5$) in a similar manner to $R_{y}$Sr$_{1-y}$MnO$_3$ ($R$=La, Pr), due to the generation of Mn$^{3+}$ in both families of manganite perovskites by either $B$-site substitution of Ru$^{5+}$ for Mn$^{4+}$ or $A$-site substitution of $R^{3+}$ for Sr$^{2+}$. This similarity is driven by the same ratio of $d^4$ / $d^3$ ions in both classes of materials for equivalent substitution level. In both cases, a tetragonal lattice distortion is observed, which for some compositions ($0.06 leqslant x leqslant 0.2$) is coupled to a C-type AF transition and results in a first order magnetic and resistive transition. Heavily substituted SrMn$_{1-x}$Ru$_{x}$O$_3$ materials are ferromagnetic due to dominating exchange interactions between the Ru$^{4+}$ ions. Intermediate substitution ($0.6 leqslant x leqslant 0.7$) leads to a spin-glass behavior instead of a quantum critical point reported previously in single crystals, due to enhanced disorder.
We report temperature dependent measurements of ambient pressure specific heat, magnetic susceptibility, anisotropic resistivity and thermal expansion as well as in-plane resistivity under pressure up to 20.8 kbar on single crystals of EuAg$_4$As$_2$. Based on thermal expansion and in-plane electrical transport measurements at ambient pressure this compound has two, first order, structural transitions in 80 - 120 K temperature range. Ambient pressure specific heat, magnetization and thermal expansion measurements show a cascade of up to seven transitions between 8 and 16 K associated with the ordering of the Eu$^{2+}$ moments. In-plane electrical transport is able to detect more prominent of these transitions: at 15.5, 9.9, and 8.7 K as well as a weak feature at 11.8 K at ambient pressure. Pressure dependent electrical transport data show that the magnetic transitions shift to higher temperatures under pressure, as does the upper structural transition, whereas the lower structural transition is suppressed and ultimately vanishes. A jump in resistivity, associated with the upper structural transition, decreases under pressure with an extrapolated disappearance (or a change of sign) by 30-35 kbar. In the 10 - 15 kbar range a kink in the pressure dependence of the upper structural transition temperature as well as the high and low temperature in-plane resistivities suggest that a change in the electronic structure may occur in this pressure range. The results are compared with the literature data for SrAg$_4$As$_2$.
Combining experiments with first principles calculations, we show that site-specific doping of Mn into SrTiO3 has a decisive influence on the dielectric properties of these doped systems. We find that phonon contributions to the dielectric constant invariably decrease sharply on doping at any site. However, a sizable, random dipolar contribution only for Mn at the Sr site arises from a strong off-centric displacement of Mn in spite of Mn being in a non-d0 state; this leads to a large dielectric constant at higher temperatures and gives rise to a relaxor ferroelectric behavior at lower temperatures. We also investigate magnetic properties in detail and critically reevaluate the possibility of a true multi-glass state in such systems.
We use density functional theory to calculate the structure, band-gap and magnetic properties of oxygen-deficient SrTi$_{1-x-y}$Fe$_x$Co$_y$O$_{3-delta}$ with x = y = 0.125 and ${delta}$ = (0,0.125,0.25). The valence and the high or low spin-states of the Co and Fe ions, as well as the lattice distortion and the band-gap, depend on the oxygen deficiency, the locations of the vacancies, and on the direction of the Fe-Co axis. A charge redistribution that resembles a self-regulatory response lies behind the valence spin-state changes. Ferromagnetism dominates, and both the magnetization and the band gap are greatest at ${delta}$ = 0.125. This qualitatively mimics the previously reported magnetization measured for SrTiFeO$_{3-delta}$, which was maximum at an intermediate deposition pressure of oxygen.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا