Do you want to publish a course? Click here

Magnetic, electrical resistivity, heat-capacity and thermopower anomalies in CeCuAs2

85   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of magnetic susceptibility, electrical resistivity ($rho$), heat-capacity (C) and thermopower (S) measurements on CeCuAs2, forming in ZrCuSi2-type tetragonal structure, are reported. Our investigations reveal that Ce is trivalent and there is no clear evidence for long range magnetic ordering down to 45 mK. The $rho$ behavior is notable in the sense that (i) the temperature (T)-coefficient of $rho$ is negative in the entire range of measurement (45 mK to 300 K) with large values of $rho$, while S behavior is typical of metallic Kondo lattices, and (ii) $rho$ is proportional to T-0.6 at low temperatures, without any influence on the exponent by the application of a magnetic field, which does not seem to classify this compound into hither-to-known non-Fermi liquid (NFL) systems. In contrast to the logarithmic increase known for NFL systems, C/T measured down to 0.5 K exhibits a fall below 2 K. The observed properties of this compound are unusual among Ce systems.

rate research

Read More

The results of magnetization, heat-capacity, and electrical resistivity (rho) studies of the compounds, RMAs2 (R= Pr and Sm; M= Ag, Au), crystallizing in HfCuSi2-derived structure are reported. PrAgAs2 orders antiferromagnetically at T_N= 5 K. The Au analogue, however, does not exhibit long range magnetic order down to 1.8 K. We infer that this is due to subtle differences in their crystallographic features, particularly noting that both the Sm compounds with identical crystal structure as that of former order magnetically nearly at the same temperature (about 17 K). It appears that, in PrAgAs2, SmAgAs2, and SmAuAs2, there is an additional magnetic transition at a lower temperature, as though the similarity in the crystal structure results in similarities in magnetism as well. The rho for PrAgAs2 and PrAuAs2 exhibits negative temperature coefficient in some temperature range in the paramagnetic state. SmAuAs2 exhibits magnetic Brillouin-zone gap effect in rho at T_N, while SmAgAs2 shows a well-defined broad minimum well above T_N around 45 K. Thus, these compounds reveal interesting magnetic and transport properties.
84 - Z. Xiang , Y. Kasahara , T. Asaba 2019
In metals, orbital motions of conduction electrons on the Fermi surface are quantized in magnetic fields, which is manifested by quantum oscillations in electrical resistivity. This Landau quantization is generally absent in insulators. Here we report a notable exception in an insulator, ytterbium dodecaboride (YbB12). Despite much larger than that of metals, the resistivity of YbB12 exhibits profound quantum oscillations. This unconventional oscillation is shown to arise from the insulating bulk, yet the temperature dependence of their amplitude follows the conventional Fermi liquid theory of metals. The large effective masses indicate the presence of Fermi surface consisting of strongly correlated electrons. Our result reveals a mysterious bipartite ground state of YbB12: it is both a charge insulator and a strongly correlated metal.
106 - Yinghao Zhu , Ying Fu , Bao Tu 2020
We have studied a nearly stoichiometric insulating Y$_{0.97(2)}$Cr$_{0.98(2)}$O$_{3.00(2)}$ single crystal by performing measurements of magnetization, heat capacity, and neutron diffraction. Albeit that the YCrO$_3$ compound behaviors like a soft ferromagnet with a coersive force of $sim$ 0.05 T, there exist strong antiferromagnetic (AFM) interactions between Cr$^{3+}$ spins due to a strongly negative paramagnetic Curie-Weiss temperature, i.e., -433.2(6) K. The coexistence of ferromagnetism and antiferromagnetism may indicate a canted AFM structure. The AFM phase transition occurs at $T_textrm{N} =$ 141.5(1) K, which increases to $T_textrm{N}$(5T) = 144.5(1) K at 5 T. Within the accuracy of the present neuron-diffraction studies, we determine a G-type AFM structure with a propagation vector textbf{k} = (1 1 0) and Cr$^{3+}$ spin directions along the crystallographic emph{c} axis of the orthorhombic structure with space group emph{Pnma} below $T_textrm{N}$. At 12 K, the refined moment size is 2.45(6) $mu_textrm{B}$, $sim$ 82% of the theoretical saturation value 3 $mu_textrm{B}$. The Cr$^{3+}$ spin interactions are probably two-dimensional Ising like within the reciprocal (1 1 0) scattering plane. Below $T_textrm{N}$, the lattice configuration (emph{a}, emph{b}, emph{c}, and emph{V}) deviates largely downward from the Gr$ddot{textrm{u}}$neisen law, displaying an anisotropic magnetostriction effect and a magnetoelastic effect. Especially, the sample contraction upon cooling is enhanced below the AFM transition temperature. There is evidence to suggest that the actual crystalline symmetry of YCrO$_3$ compound is probably lower than the currently assumed one. Additionally, we compared the $t_{2textrm{g}}$ YCrO$_3$ and the $e_textrm{g}$ La$_{7/8}$Sr$_{1/8}$MnO$_3$ single crystals for a further understanding of the reason for the possible symmetry lowering.
The heat-capacity and magnetization measurements under high pressure have been carried out in a ferromagnetic superconductor UGe$_2$. Both measurements were done using a same pressure cell in order to obtain both data for one pressure. Contrary to the heat capacity at ambient pressure, an anomaly is found in the heat capacity at the characteristic temperature $T^{*}$ where the magnetization shows an anomalous enhancement under high pressure where the superconductivity appears. This suggests that a thermodynamic phase transition takes place at $T^{*}$ at least under high pressure slightly below $P_{c}^{*}$ where $T^{*}$ becomes zero. The heat-capacity anomaly associated with the superconducting transition is also investigated, where a clear peak of $C/T$ is observed in a narrow pressure region ($Delta P sim 0.1$ GPa) around $P_{c}^{*}$ contrary to the previous results of the resistivity measurement. Present results suggest the importance of the thermodynamic critical point $P_{c}^{*}$ for the appearance of the superconductivity.
The compound CaV2O4 contains V^{+3} cations with spin S = 1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c-axis. We have grown single crystals of CaV2O4 and report crystallography, static magnetization, magnetic susceptibility chi, ac magnetic susceptibility, heat capacity Cp, and thermal expansion measurements in the temperature T range of 1.8-350 K on the single crystals and on polycrystalline samples. An orthorhombic to monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures T_S approx 108-145 K and T_N approx 51-76 K, respectively. In two annealed single crystals, another transition was found at approx 200 K. In one of the crystals, this transition is mostly due to V2O3 impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The chi(T) shows a broad maximum at approx 300 K associated with short-range AF ordering and the anisotropy of chi above T_N is small. The anisotropic chi(T to 0) data below T_N show that the (average) easy axis of the AF magnetic structure is the b-axis. The Cp(T) data indicate strong short-range AF ordering above T_N, consistent with the chi(T) data. We fitted our chi(T) data near room temperature by a J1-J2 S = 1 Heisenberg chain model, where J1(J2) is the (next)-nearest-neighbor exchange interaction. We find J1 approx 230 K, and surprisingly, J2/J1 approx 0 (or J1/J2 approx 0). The interaction J_perp between these S = 1 chains leading to long-range AF ordering at T_N is estimated to be J_perp/J_1 gtrsim 0.04.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا