Do you want to publish a course? Click here

Quantum Oscillations of Electrical Resistivity in an Insulator

85   0   0.0 ( 0 )
 Added by Lu Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In metals, orbital motions of conduction electrons on the Fermi surface are quantized in magnetic fields, which is manifested by quantum oscillations in electrical resistivity. This Landau quantization is generally absent in insulators. Here we report a notable exception in an insulator, ytterbium dodecaboride (YbB12). Despite much larger than that of metals, the resistivity of YbB12 exhibits profound quantum oscillations. This unconventional oscillation is shown to arise from the insulating bulk, yet the temperature dependence of their amplitude follows the conventional Fermi liquid theory of metals. The large effective masses indicate the presence of Fermi surface consisting of strongly correlated electrons. Our result reveals a mysterious bipartite ground state of YbB12: it is both a charge insulator and a strongly correlated metal.



rate research

Read More

The results of magnetic susceptibility, electrical resistivity ($rho$), heat-capacity (C) and thermopower (S) measurements on CeCuAs2, forming in ZrCuSi2-type tetragonal structure, are reported. Our investigations reveal that Ce is trivalent and there is no clear evidence for long range magnetic ordering down to 45 mK. The $rho$ behavior is notable in the sense that (i) the temperature (T)-coefficient of $rho$ is negative in the entire range of measurement (45 mK to 300 K) with large values of $rho$, while S behavior is typical of metallic Kondo lattices, and (ii) $rho$ is proportional to T-0.6 at low temperatures, without any influence on the exponent by the application of a magnetic field, which does not seem to classify this compound into hither-to-known non-Fermi liquid (NFL) systems. In contrast to the logarithmic increase known for NFL systems, C/T measured down to 0.5 K exhibits a fall below 2 K. The observed properties of this compound are unusual among Ce systems.
We have studied the magnetotransport properties of the metallic, p-type Sb2Te2Se which is a topological insulator. Magnetoresistance shows Shubnikov de Haas oscillations in fields above B=15 T. The maxima/minima positions of oscillations measured at different tilt angles with respect to the B direction align with the normal component of field Bcosine, implying the existence of a 2D Fermi surface in Sb2Te2Se. The value of the Berry phase determined from a Landau level fan diagram is very close to 0.5, further suggesting that the oscillations result from topological surface states. From Lifshitz-Kosevich analyses, the position of the Fermi level is found to be EF =250 meV, above the Dirac point. This value of EF is almost 3 times as large as that in our previous study on the Bi2Se2:1Te0:9 topological insulator; however, it still touches the tip of the bulk valence band. This explains the metallic behavior and hole-like bulk charge carriers in the Sb2Te2Se compound.
The interplay between topology and magnetism is essential for realizing novel topological states including the axion insulator, the magnetic Weyl semimetals, the Chern insulator, as well as the 3D quantized anomalous Hall insulator. A stoichiometric, intrinsically consisting of the building blocks of [MnBi2Te4] septuple layers and [Bi2Te3] quintuple layers, we report the first stoichiometric, intrinsic ferromagnetic topological material with clean low-energy band structure in MnBi8Te13. Our data show that MnBi8Te13 is ferromagnetic below 10.5 K with strong coupling between magnetism and charge carriers. Our first-principles calculations and angle-resolved photoemission spectroscopy measurements further demonstrate that MnBi8Te13 is an intrinsic ferromagnetic axion insulator. Therefore, MnBi8Te13 serves as an ideal system to investigate rich emergent phenomena, including quantized anomalous Hall effect and quantized topological magnetoelectric effect.
Resistivities of heavy-fermion insulators typically saturate below a characteristic temperature $T^*$. For some, metallic surface states, potentially from a non-trivial bulk topology, are a likely source of residual conduction. Here, we establish an alternative mechanism: At low temperature, in addition to the charge gap, the scattering rate turns into a relevant energy scale, invalidating the semiclassical Boltzmann picture. Finite lifetimes of intrinsic carriers limit conduction, impose the existence of a crossover $T^*$, and control - now on par with the gap - the quantum regime emerging below it. We showcase the mechanism with realistic many-body simulations and elucidate how the saturation regime of the Kondo insulator Ce$_3$Bi$_4$Pt$_3$, for which residual conduction is a bulk property, evolves under external pressure and varying disorder. Using a phenomenological formula we derived for the quantum regime, we also unriddle the ill-understood bulk conductivity of SmB$_6$ - demonstrating that our mechanism is widely applicable to correlated narrow-gap semiconductors.
Recent quantum oscillation experiments on SmB$_6$ pose a paradox, for while the angular dependence of the oscillation frequencies suggest a 3D bulk Fermi surface, SmB$_6$ remains robustly insulating to very high magnetic fields. Moreover, a sudden low temperature upturn in the amplitude of the oscillations raises the possibility of quantum criticality. Here we discuss recently proposed mechanisms for this effect, contrasting bulk and surface scenarios. We argue that topological surface states permit us to reconcile the various data with bulk transport and spectroscopy measurements, interpreting the low temperature upturn in the quantum oscillation amplitudes as a result of surface Kondo breakdown and the high frequency oscillations as large topologically protected orbits around the X point. We discuss various predictions that can be used to test this theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا