Do you want to publish a course? Click here

An Effective Reduction of Critical Current for Current-Induced Magnetization Switching by a Ru Layer Insertion in an Exchange-Biased Spin-Valve

85   0   0.0 ( 0 )
 Added by Yong Jiang
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently it has been predicted that a spin-polarized electrical current perpendicular-to-plane (CPP) directly flowing through a magnetic element can induce magnetization switching through spin-momentum transfer. In this letter, the first observation of current-induced magnetization switching (CIMS) in exchange-biased spin-valves (ESPVs) at room temperature is reported. The ESPVs show the CIMS behavior under a sweeping dc current with a very high critical current density. It is demonstrated that a thin Ruthenium (Ru) layer inserted between a free layer and a top electrode effectively reduces the critical current densities for the CIMS. An inverse CIMS behavior is also observed when the thickness of the free layer increases.



rate research

Read More

In this work, we study magnetization switching induced by spin-orbit torque in W(Pt)/Co/NiO heterostructures with variable thickness of heavy-metal layers W and Pt, perpendicularly magnetized Co layer and an antiferromagnetic NiO layer. Using current-driven switching, magnetoresistance and anomalous Hall effect measurements, perpendicular and in-plane exchange bias field were determined. Several Hall-bar devices possessing in-plane exchange bias from both systems were selected and analyzed in relation to our analytical switching model of critical current density as a function of Pt and W thickness, resulting in estimation of effective spin Hall angle and perpendicular effective magnetic anisotropy. We demonstrate in both the Pt/Co/NiO and the W/Co/NiO systems the deterministic Co magnetization switching without external magnetic field which was replaced by in-plane exchange bias field. Moreover, we show that due to a higher effective spin Hall angle in W than in Pt-systems the relative difference between the resistance states in the magnetization current switching to difference between the resistance states in magnetic field switching determined by anomalous Hall effect ($Delta R/Delta R_{text{AHE}}$) is about twice higher in W than Pt, while critical switching current density in W is one order lower than in Pt-devices. The current switching stability and training process is discussed in detail.
We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almost constant. Without the need of overcoming the strong interfacial Dzyaloshinskii-Moriya interaction caused by the heavy metal, a quite low assistant field of ~20 Oe is sufficient to realize the fully switching. The SOT effective field decreases and undergoes a sign change with the decrease of the Tb-concentration, implying that a combination of the spin Hall effect from both Co and Tb as well as an asymmetric spin current absorption accounts for the SOT switching mechanism. Our findings would advance the use of magnetic materials with bulk PMA for energy-efficient and thermal-stable non-volatile memories, and add a different dimension for understanding the ordering and asymmetry in amorphous thin films.
185 - J. Grollier 2002
We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.
271 - Zehan Chen , Lin Liu , Zhixiang Ye 2021
We report the first demonstration of the current-induced magnetization switching in a perpendicularly magnetized A1 CoPt single layer. We show that good perpendicular magnetic anisotropy can be obtained in a wide composition range of the A1 Co1-xPtx single layers, which allows to fabricate perpendicularly magnetized CoPt single layer with composition gradient to break the inversion symmetry of the structure. By fabricating the gradient CoPt single layer, we have evaluated the SOT efficiency and successfully realized the SOT-induced magnetization switching. Our study provides an approach to realize the current-induced magnetization in the ferromagnetic single layers without attaching SOT source materials.
We report the intrinsic critical current density (Jc0) in current-induced magnetization switching and the thermal stability factor (E/kBT, where E, kB, and T are the energy potential, the Boltzmann constant, and temperature, respectively) in MgO based magnetic tunnel junctions with a Co40Fe40B20(2nm)/Ru(0.7-2.4nm)/Co40Fe40B20(2nm) synthetic ferrimagnetic (SyF) free layer. We show that Jc0 and E/kBT can be determined by analyzing the average critical current density as a function of coercivity using the Slonczewskis model taking into account thermal fluctuation. We find that high antiferromagnetic coupling between the two CoFeB layers in a SyF free layer results in reduced Jc0 without reducing high E/kBT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا