Do you want to publish a course? Click here

Large Anomalous Hall effect in a silicon-based magnetic semiconductor

107   0   0.0 ( 0 )
 Added by John F. DiTusa
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology. While Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, and which we have proven to display a variety of large magnetic field effects on easily measured electrical properties.



rate research

Read More

138 - Qi Wang , Yuanfeng Xu , Rui Lou 2017
The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspect in condensed matter physics and has been controversial for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions on Berry curvature around Weyl nodes, which would lead to a large intrinsic AHE. Here, we report the large intrinsic AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 theoretically and experimentally, the large intrinsic AHE should originate from the Weyl fermions near the Fermi energy. Furthermore, the intrinsic anomalous Hall conductivity depends linearly on the magnetization and this can be attributed to the sharp decrease of magnetization and the change of topological characteristics.
We report on the experimental observation of an anomalous Hall effect (AHE) in highly oriented pyrolytic graphite samples. The overall data indicate that the AHE in graphite can be self-consistently understood within the frameworks of the magnetic-field-driven excitonic pairing models.
The Hall effect in SrRuO$_3$ thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional skyrmions in the film around the coercive field; however, the sign of the anomalous Hall effect in SrRuO$_3$ can change as a function of saturation magnetization. Here we report Hall peaks in SrRuO$_3$ in which volumetric magnetometry measurements and magnetic force microscopy indicate that the peaks result from the superposition of two anomalous Hall channels with opposite sign. These channels likely form due to thickness variations in SrRuO$_3$, creating two spatially separated magnetic regions with different saturation magnetizations and coercive fields. The results are central to the development of strongly correlated materials for spintronics.
Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in anomalous Hall effect (AHE). However, since large Hall response originating from Berry curvature has been reported in quite limited materials, the detailed mechanism remains unclear at present. Here, we report the discovery of a large AHE triggered by a pressure-induced magnetic phase transition in elemental $alpha$-Mn. The AHE is absent in the non-collinear antiferromagnetic phase at ambient pressure, whereas a large AHE is observed in the weak ferromagnetic phase under high pressure despite the small averaged moment of $sim 0.02 mu_B$/Mn. Our results indicate that the emergence of the AHE in $alpha$-Mn is governed by the symmetry of the underlying magnetic structure, providing a direct evidence of a switch between a zero and non-zero contribution of the Berry curvature across the phase boundary. $alpha$-Mn can be an elemental and tunable platform to reveal the role of Berry curvature in AHE.
We report the observation of the fractional quantum Hall effect in the lowest Landau level of a two-dimensional electron system (2DES), residing in the diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic impurities results in a giant Zeeman splitting leading to an unusual ordering of composite fermion Landau levels. In experiment, this results in an unconventional opening and closing of fractional gaps around filling factor v = 3/2 as a function of an in-plane magnetic field, i.e. of the Zeeman energy. By including the s-d exchange energy into the composite Landau level spectrum the opening and closing of the gap at filling factor 5/3 can be modeled quantitatively. The widely tunable spin-splitting in a diluted magnetic 2DES provides a novel means to manipulate fractional states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا