The scaling properties encompass in a simple analysis many of the volatility characteristics of financial markets. That is why we use them to probe the different degree of markets development. We empirically study the scaling properties of daily Foreign Exchange rates, Stock Market indices and fixed income instruments by using the generalized Hurst approach. We show that the scaling exponents are associated with characteristics of the specific markets and can be used to differentiate markets in their stage of development. The robustness of the results is tested by both Monte-Carlo studies and a computation of the scaling in the frequency-domain.
An empirical analysis of interest rates in money and capital markets is performed. We investigate a set of 34 different weekly interest rate time series during a time period of 16 years between 1982 and 1997. Our study is focused on the collective behavior of the stochastic fluctuations of these time-series which is investigated by using a clustering linkage procedure. Without any a priori assumption, we individuate a meaningful separation in 6 main clusters organized in a hierarchical structure.
A new approach to the understanding of complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory is applied to binary sequences built up from real time series of financial markets indexes. The study is based on NASDAQ and Mexican IPC data. Different behaviors of this magnitude are shown when applied to the intervals of series placed before crashes and to intervals when no financial turbulence is observed. The connection between our results and The Efficient Market Hypothesis is discussed.
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients which evolve in time with a memory of how past news have explained realized market returns. We study t
At present, there is an explosion of practical interest in the pricing of interest rate (IR) derivatives. Textbook pricing methods do not take into account the leptokurticity of the underlying IR process. In this paper, such a leptokurtic behaviour is illustrated using LIBOR data, and a possible martingale pricing scheme is discussed.
We show that smoothing of multiaffine surfaces that are generated by simulating a crosslinked polymer gel by a frustrated, triangular network of springs of random equilibrium lengths [G.M. Buend{i}a, S.J. Mitchell, P.A. Rikvold, Phys. Rev. E 66 (2002) 046119] changes the scaling behavior of the surfaces such that they become self-affine. The self-affine behavior is consistent with recent atomic force microscopy (AFM) studies of the surface structure of crosslinked polymer gels into which voids are introduced through templating by surfactant micelles [M. Chakrapani, S.J. Mitchell, D.H. Van Winkle, P.A. Rikvold, J. Colloid Interface Sci., in press]. The smoothing process mimics the effect of the AFM tip that tends to flatten the soft gel surfaces. Both the experimental and the simulated surfaces have a non-trivial scaling behavior on small length scales, with a crossover to scale-independent behavior on large scales.
T. Di Matteo
,T. Aste
,M. M. Dacorogna
.
(2004)
.
"Long term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development"
.
Tiziana Di Matteo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا