No Arabic abstract
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients which evolve in time with a memory of how past news have explained realized market returns. We study t
A self-organized model with social percolation process is proposed to describe the propagations of information for different trading ways across a social system and the automatic formation of various groups within market traders. Based on the market structure of this model, some stylized observations of real market can be reproduced, including the slow decay of volatility correlations, and the fat tail distribution of price returns which is found to cross over to an exponential-type asymptotic decay in different dimensional systems.
A new approach to the understanding of complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory is applied to binary sequences built up from real time series of financial markets indexes. The study is based on NASDAQ and Mexican IPC data. Different behaviors of this magnitude are shown when applied to the intervals of series placed before crashes and to intervals when no financial turbulence is observed. The connection between our results and The Efficient Market Hypothesis is discussed.
The Glosten-Milgrom model describes a single asset market, where informed traders interact with a market maker, in the presence of noise traders. We derive an analogy between this financial model and a Szilard information engine by {em i)} showing that the optimal work extraction protocol in the latter coincides with the pricing strategy of the market maker in the former and {em ii)} defining a market analogue of the physical temperature from the analysis of the distribution of market orders. Then we show that the expected gain of informed traders is bounded above by the product of this market temperature with the amount of information that informed traders have, in exact analogy with the corresponding formula for the maximal expected amount of work that can be extracted from a cycle of the information engine. This suggests that recent ideas from information thermodynamics may shed light on financial markets, and lead to generalised inequalities, in the spirit of the extended second law of thermodynamics.
We use standard physics techniques to model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of a market, such as the diffusion rate of prices, which is the standard measure of financial risk, and the spread and price impact functions, which are the main determinants of transaction cost. Guided by dimensional analysis, simulation, and mean field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
Properties of the self-adjusted Monte Carlo algorithm applied to 2d Ising ferromagnet are studied numerically. The endogenous feedback form expressed in terms of the instant running averages is suggested in order to generate a biased random walk of the temperature that converges to criticality without an external tuning. The robustness of a stationary regime with respect to partial accessibility of the information is demonstrated. Several statistical and scaling aspects have been identified which allow to establish an alternative spin lattice model of the financial market. It turns out that our model alike model suggested by S. Bornholdt, Int. J. Mod. Phys. C {bf 12} (2001) 667, may be described by Levy-type stationary distribution of feedback variations with unique exponent $alpha_1 sim 3.3$. However, the differences reflected by Hurst exponents suggest that resemblances between the studied models seem to be nontrivial.