Do you want to publish a course? Click here

Exchange coupling and enhancement of Curie temperature of the intergranular amorphous region in nano-crystalline duplex-phase alloys system

109   0   0.0 ( 0 )
 Added by YuanZhi Shao
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explored the magnetic behavior of a common two-phase nanomagnetic system by Monte Carlo computer simulation of a modified Heisenberg model on a 3D complex lattice with single- and cluster-spins. The effect of exchange coupling between two component magnetic phases was studied on the enhancement in Curie temperature (ECT) of the intergranular amorphous region of a common duplex-phase alloy system, with numerous nano-crystallites embedded in amorphous matrix. The dependences of ECT were investigated systematically upon the nanocrystallite size, the volume fraction and the interspace among crystallites. It was observed that large crystallized volume fraction, small grain size and thin inter-phase thickness lead to the obvious ECT of intergranular amorphous region whereas the Curie temperature of nanocrystallites declines slightly. There is a simulative empirical formula which relates the reduced ECT to microstructure parameter and conforms to its experimental counterpart within an order of magnitude. In addition, we also simulated the demagnetization of a hard-soft nanocomposite system. We estimated the influence of exchange coupling between two component phases on the cooperativity of two-phase magnetizations and the coherent reversal of magnetizations as well as coercivity and energy product.



rate research

Read More

165 - A. Koeder , W. Limmer , S. Frank 2003
We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices grown by low-temperature molecular beam epitaxy, which is due to thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced increase of the Curie temperature is strongly correlated to the In concentration in the embedded layers. Curie temperatures up to 110 K are observed in such structures compared to 60 K in GaMnAs single layers grown under the same conditions. A further increase in T$_C$ up to 130 K can be achieved using post-growth annealing at temperatures near the growth temperature. Pronounced thickness fringes in the high resolution X-ray diffraction spectra indicate good crystalline quality and sharp interfaces in the structures.
Using first-principles electronic structure calculations, we have studied the dependence of the Curie temperature on external hydrostatic pressure for random Ni2MnSn Heusler alloys doped with Cu and Pd atoms, over the entire range of dopant concentrations. The Curie temperatures are calculated by applying random-phase approximation to the Heisenberg Hamiltonian whose parameters are determined using the linear response and multiple scattering methods, based on density-functional theory. In (Ni1-x,Pdx)2MnSn alloys, the Curie temperature is found to increase with applied pressure over the whole concentration range. The crossover from the increase to the decrease of the Curie temperature with pressure takes place for Cu concentrations larger than about 70% in (Ni1-x,Cux)2MnSn Heusler alloys. The results for the reference Ni2MnSn Heusler alloy agree well with a previous theoretical study of E. Sasioglu, L. M. Sandratskii and P. Bruno Phys. Rev. B 71 214412 (2005) and also reasonably well with available experimental data. Results for the spin-disorder-induced part of the resistivity in (Ni1-x,Pdx)2MnSn Heusler alloys, calculated by using the disordered local moment model, are also presented. Finally, a qualitative understanding of the results, based on Andersons superexchange interaction and Stearns model of the indirect exchange interaction between localized and itinerant d electrons, is provided.
We present a comparative, theoretical study of the doping dependence of the critical temperature $T_C$ of the ferromagnetic insulator-metal transition in Gd-doped and O-deficient EuO, respectively. The strong $T_C$ enhancement in Eu$_{1-x}$Gd$_x$O is due to Kondo-like spin fluctuations on the Gd sites, which are absent in EuO$_{1-x}$. Moreover, we find that the $T_C$ saturation in Eu$_{1-x}$Gd$_x$O for large $x$ is due to a reduced activation of dopant electrons into the conduction band, in agreement with experiments, rather than antiferromagnetic long-range contributions of the RKKY interaction. The results shed light on possibilities for further increasing $T_C$.
We have put into evidence the existence of an antiferromagnetic coupling between iron epilayers separated by a ZnSe crystalline semiconductor. The effect has been observed for ZnSe spacers thinner than 4 nm at room-temperature. The coupling constant increases linearly with temperature with a constant slope of ~5.5x 10-9 J/m2K. The mechanisms that may explain such exchange interaction are discussed in the manuscript. It results that thermally-induced effective exchange coupling mediated by spin-dependent on and off resonant tunnelling of electrons via localized mid-gap defect states in the ZnSe spacer layer appears to be the most plausible mechanism to induce the antiferromagnetic coupling.
We propose that the driving force of an ultrafast crystalline-to-amorphous transition in phase-change memory alloys are strained bonds existing in the (metastable) crystalline phase. For the prototypical example of GST, we demonstrate that upon breaking of long Ge-Te bond by photoexcitation Ge ion shot from an octahedral crystalline to a tetrahedral amorphous position by the uncompensated force of strained short bonds. Subsequent lattice relaxation stabilizes the tetrahedral surroundings of the Ge atoms and ensures the long-term stability of the optically induced phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا