Do you want to publish a course? Click here

Enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices

166   0   0.0 ( 0 )
 Added by Achim Koeder
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices grown by low-temperature molecular beam epitaxy, which is due to thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced increase of the Curie temperature is strongly correlated to the In concentration in the embedded layers. Curie temperatures up to 110 K are observed in such structures compared to 60 K in GaMnAs single layers grown under the same conditions. A further increase in T$_C$ up to 130 K can be achieved using post-growth annealing at temperatures near the growth temperature. Pronounced thickness fringes in the high resolution X-ray diffraction spectra indicate good crystalline quality and sharp interfaces in the structures.



rate research

Read More

We provide experimental evidence that the upper limit of ~110 K commonly observed for the Curie temperature T_C of Ga(1-x)Mn(x)As is caused by the Fermi-level-induced hole saturation. Ion channeling, electrical and magnetization measurements on a series of Ga(1-x-y)Mn(x)Be(y)As layers show a dramatic increase of the concentration of Mn interstitials accompanied by a reduction of T_C with increasing Be concentration, while the free hole concentration remains relatively constant at ~5x10^20 cm^-3. These results indicate that the concentrations of free holes and ferromagnetically active Mn spins are governed by the position of the Fermi level, which controls the formation energy of compensating interstitial Mn donors.
98 - A. Koeder , S. Frank , W. Schoch 2002
We report on detailed investigations of the electronic and magnetic properties of ferromagnetic GaMnAs layers, which have been fabricated by low-temperature molecular-beam epitaxy. Superconducting quantum interference device measurements reveal a decrease of the Curie temperature from the surface to the GaMnAs/GaAs interface. While high resolution x-ray diffraction clearly shows a homogeneous Mn distribution, a pronounced decrease of the carrier concentration from the surface towards the GaMnAs/GaAs interface has been found by Raman spectroscopy as well as electrochemical capacitance-voltage profiling. The gradient in Curie temperature seems to be a general feature of GaMnAs layers grown at low-temperature. Possible explanations are discussed.
We present a comparative, theoretical study of the doping dependence of the critical temperature $T_C$ of the ferromagnetic insulator-metal transition in Gd-doped and O-deficient EuO, respectively. The strong $T_C$ enhancement in Eu$_{1-x}$Gd$_x$O is due to Kondo-like spin fluctuations on the Gd sites, which are absent in EuO$_{1-x}$. Moreover, we find that the $T_C$ saturation in Eu$_{1-x}$Gd$_x$O for large $x$ is due to a reduced activation of dopant electrons into the conduction band, in agreement with experiments, rather than antiferromagnetic long-range contributions of the RKKY interaction. The results shed light on possibilities for further increasing $T_C$.
We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML) (23-45 AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 AA). While previous reports state that GaMnAs layers thinner than 50 AA are paramagnetic in the whole Mn composition range achievable using MBE growth (up to 8% Mn), we have found that short period superlattices exhibit a paramagnetic-to-ferromagnetic phase transition with a transition temperature which depends on both the thickness of the magnetic GaMnAs layer and the nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the magnetic layers in superlattices are ferromagnetically coupled for both thin (below 50 AA) and thick (above 50 AA) GaMnAs layers.
Mn_5Ge_3C_x films with x>0.5 were experimentally shown to exhibit a strongly enhanced Curie temperature T_C compared to Mn_5Ge_3. In this letter we present the results of our first principles calculations within Greens function approach, focusing on the effect of carbon doping on the electronic and magnetic properties of the Mn_5Ge_3. The calculated exchange coupling constants revealed an enhancement of the ferromagnetic Mn-Mn interactions mediated by carbon. The essentially increased T_C in Mn_5Ge_3C is well reproduced in our Monte Carlo simulations and together with the decrease of the total magnetisation is found to be predominantly of an electronic nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا