Do you want to publish a course? Click here

Magnetoelectric Effects in Ferromagnetic Metal-Piezoelectric Oxide Layered Structures

155   0   0.0 ( 0 )
 Added by Gopalan Srinivasan
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Frequency dependence of magnetoelectric (ME) coupling is investigated in trilayers of ferromagnetic alloy and piezoelectric lead zirconate titanate (PZT). The ferromagnetic phases studied include permendur, a soft magnet with high magnetostriction, iron, nickel, and cobalt. Low frequency data on ME voltage coefficient versus bias magnetic field indicate strong coupling only for trilayers with permendure or Ni. Measurements of frequency dependence of ME voltage reveal a giant ME coupling at electromechanical resonance. The ME interactions for transverse fields is an order of magnitude stronger than for longitudinal fields. The maximum voltage coefficient of 90 V/cm Oe at resonance is measured for samples with nickel or permendure and is three orders of magnitude higher than low-frequency values.



rate research

Read More

The observation of strong magnetoelectric effects is reported in thick film bilayers and multilayers of ferrite-lead titanate zirconate (PZT) and lanthanum nanganite-PZT. The ferrites used in our studies included pure and zinc substituted cobalt-, nickel- and lithium ferrites. Samples were prepared by sintering 10-40 mm thick films obtained by tape-casting. Measurements of ME voltage coefficients at 10-1000 Hz indicated a giant ME effect in nickel ferrite-PZT, but a relatively weak coupling in other ferrite-PZT and manganite-PZT systems. Multilayers prepared by hot pressing was found to show a higher ME coefficient than sintered samples. Evidence was found for enhancement in ME coefficients when Zn was substituted in ferrites. The Zn-assisted increase was attributed to low anisotropy and high permeability that resulted in favorable magneto-mechanical coupling in the composites. We analyzed the data in terms of our recent comprehensive theory that takes into account actual interface conditions by introducing an interface coupling parameter. Theoretical longitudinal and transverse ME voltage coefficients for unclamped and clamped samples are in general agreement with data. From the analysis we inferred excellent interface coupling for nickel zinc ferrite-PZT and weak coupling for other layered systems.
We demonstrate dynamic voltage control of the magnetic anisotropy of a (Ga,Mn)As device bonded to a piezoelectric transducer. The application of a uniaxial strain leads to a large reorientation of the magnetic easy axis which is detected by measuring longitudinal and transverse anisotropic magnetoresistance coefficients. Calculations based on the mean-field kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the measured effect. Electrically induced magnetization switching and detection of unconventional crystalline components of the anisotropic magnetoresistance are presented, illustrating the generic utility of the piezo voltage control to provide new device functionalities and in the research of micromagnetic and magnetotransport phenomena in diluted magnetic semiconductors.
212 - Michael A. McGuire 2017
Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX2 and MX3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhanced functionality. Here a brief overview of binary transition metal dihalides and trihalides is given, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.
Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multiferroics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated by the notion that less stiff materials could exhibit large piezoelectric responses, herein we investigate the piezoelectric modulus of van der Waals-bonded quasi-2D ionic compounds using first-principles calculations. From a pool of 869 known binary and ternary quasi-2D materials, we have identified 135 non-centrosymmetric crystals of which 48 systems are found to have textbf{d} components larger than the longitudinal piezoelectric modulus of AlN (a common piezoelectric for resonators), and three systems with the response greater than that of PbTiO$_3$, which is among the materials with largest known piezoelectric modulus. None of the identified materials have previously been considered for piezoelectric applications. Furthermore, we find that large textbf{d} components always couple to the deformations (shearing or axial) of van der Waals gaps between the layers and are indeed enabled by the weak intra-layer interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا