Do you want to publish a course? Click here

Ehrenfest relations and magnetoelastic effects in field-induced ordered phases

62   0   0.0 ( 0 )
 Added by Masashige Matsumoto
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetoelastic properties in field-induced magnetic ordered phases are studied theoretically based on a Ginzburg-Landau theory. A critical field for the field-induced ordered phase is obtained as a function of temperature and pressure, which determine the phase diagram. It is found that magnetic field dependence of elastic constant decreases discontinuously at the critical field, Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We found an Ehrenfest relation between the field dependence of the elastic constant and the pressure dependence of critical field. Our theory provides the theoretical form for magnetoelastic properties in field- and pressure-induced ordered phases.



rate research

Read More

178 - I. Paul , A. Cano , K. Sengupta 2010
Iron telluride doped lightly with selenium is known to undergo a first order magneto-structural transition before turning superconducting at higher doping. We study the effects of magneto-elastic couplings on this transition using symmetry considerations. We find that the magnetic order parameters are coupled to the uniform monoclinic strain of the unit cell with one iron per cell, as well as to the phonons at high symmetry points of the Brillouin zone. In the magnetic phase the former gives rise to monoclinic distortion while the latter induces dimerization of the ferromagnetic iron chains due to alternate lengthening and shortening of the nearest-neighbour iron-iron bonds. We compare this system with the iron arsenides and propose a microscopic magneto-elastic Hamiltonian which is relevant for all the iron based superconductors. We argue that this describes electron-lattice coupling in a system where electron-electron interaction is crucial.
We describe a new mechanism leading to the formation of rational magnetization plateau phases, which is mainly due to the anharmonic spin-phonon coupling. This anharmonicity produces plateaux in the magnetization curve at unexpected values of the magnetization without explicit magnetic frustration in the Hamiltonian and without an explicit breaking of the translational symmetry. These plateau phases are accompanied by magneto-elastic deformations which are not present in the harmonic case.
Analysis of neutron diffraction, dc magnetization, ac magnetic susceptibility, heat capacity, and electrical resistivity for DyRuAsO in an applied magnetic field are presented at temperatures near and below those at which the structural distortion (T_S = 25 K) and subsequent magnetic ordering (T_N = 10.5 K) take place. Powder neutron diffraction is used to determine the antiferromagnetic order of Dy moments of magnitude 7.6(1) mu_B in the absence of a magnetic field, and demonstrate the reorientation of the moments into a ferromagnetic configuration upon application of a magnetic field. Dy magnetism is identified as the driving force for the structural distortion. The magnetic structure of analogous TbRuAsO is also reported. Competition between the two magnetically ordered states in DyRuAsO is found to produce unusual physical properties in applied magnetic fields at low temperature. An additional phase transition near T* = 3 K is observed in heat capacity and other properties in fields greater than about 3 T. Magnetic fields of this magnitude also induce spin-glass-like behavior including thermal and magnetic hysteresis, divergence of zero-field-cooled and field-cooled magnetization, frequency dependent anomalies in ac magnetic susceptibility, and slow relaxation of the magnetization. This is remarkable since DyRuAsO is a stoichiometric material with no disorder detected by neutron diffraction, and suggests analogies with spin-ice compounds and related materials with strong geometric frustration.
We construct and analyze a microscopic model for insulating rock salt ordered double perovskites, with the chemical formula A$_2$BBO$_6$, where the B atom has a 4d$^1$ or 5d$^1$ electronic configuration and forms a face centered cubic (fcc) lattice. The combination of the triply-degenerate $t_{2g}$ orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment $j=3/2$. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the $[110]$ direction, and a non-magnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two sublattice structure described by the ordering wavevector ${boldsymbol Q} =2pi (001)$. We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a non-magnetic valence bond solid or quantum spin liquid state may be favored instead. Candidate quantum spin liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.
In terms of a semi-phenomenological exchange charge model, we have obtained estimates of parameters of the crystal field and parameters of the electron-deformation interaction in terbium titanate Tb2Ti2O7 with a pyrochlore structure. The obtained set of parameters has been refined based on the analysis of spectra of neutron inelastic scattering and Raman light scattering, field dependences of the forced magnetostriction, and temperature dependences of elastic constants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا