Do you want to publish a course? Click here

Magnetoelastic Effects in Iron Telluride

161   0   0.0 ( 0 )
 Added by Indranil Paul
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Iron telluride doped lightly with selenium is known to undergo a first order magneto-structural transition before turning superconducting at higher doping. We study the effects of magneto-elastic couplings on this transition using symmetry considerations. We find that the magnetic order parameters are coupled to the uniform monoclinic strain of the unit cell with one iron per cell, as well as to the phonons at high symmetry points of the Brillouin zone. In the magnetic phase the former gives rise to monoclinic distortion while the latter induces dimerization of the ferromagnetic iron chains due to alternate lengthening and shortening of the nearest-neighbour iron-iron bonds. We compare this system with the iron arsenides and propose a microscopic magneto-elastic Hamiltonian which is relevant for all the iron based superconductors. We argue that this describes electron-lattice coupling in a system where electron-electron interaction is crucial.



rate research

Read More

Iron telluride (FeTe), a relative of the iron based high temperature superconductors, displays unusual magnetic order and structural transitions. Here we explore the idea that strong correlations may play an important role in these materials. We argue that the unusual orders observed in FeTe can be understood from a picture of correlated local moments with orbital degeneracy, coupled to a small density of itinerant electrons. A component of the structural transition is attributed to orbital, rather than magnetic ordering, introducing a strongly anisotropic character to the system along the diagonal directions of the iron lattice. Double exchange interactions couple the diagonal chains leading to the observed ordering wavevector. The incommensurate order in samples with excess iron arises from electron doping in this scenario. The strong anisotropy of physical properties in the ordered phase should be detectable by transport in single domains. Predictions for ARPES, inelastic neutron scattering and hole/electron doping studies are also made.
Control of emergent magnetic orders in correlated electron materials promises new opportunities for applications in spintronics. For their technological exploitation, it is important to understand the role of surfaces and interfaces to other materials and their impact on the emergent magnetic orders. Here, we demonstrate for iron telluride, the nonsuperconducting parent compound of the iron chalcogenide superconductors, determination and manipulation of the surface magnetic structure by low-temperature spin-polarized scanning tunneling microscopy. Iron telluride exhibits a complex structural and magnetic phase diagram as a function of interstitial iron concentration. Several theories have been put forward to explain the different magnetic orders observed in the phase diagram, which ascribe a dominant role either to interactions mediated by itinerant electrons or to local moment interactions. Through the controlled removal of surface excess iron, we can separate the influence of the excess iron from that of the change in the lattice structure.
We describe a new mechanism leading to the formation of rational magnetization plateau phases, which is mainly due to the anharmonic spin-phonon coupling. This anharmonicity produces plateaux in the magnetization curve at unexpected values of the magnetization without explicit magnetic frustration in the Hamiltonian and without an explicit breaking of the translational symmetry. These plateau phases are accompanied by magneto-elastic deformations which are not present in the harmonic case.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
158 - E. Bascones , B. Valenzuela , 2015
High temperature superconductivity in iron pnictides and chalcogenides emerges when a magnetic phase is suppressed. The multi-orbital character and the strength of correlations underlie this complex phenomenology, involving magnetic softness and anisotropies, with Hunds coupling playing an important role. We review here the different theoretical approaches used to describe the magnetic interactions in these systems. We show that taking into account the orbital degree of freedom allows us to unify in a single phase diagram the main mechanisms proposed to explain the (pi,0) order in iron pnictides: the nesting-driven, the exchange between localized spins, and the Hund induced magnetic state with orbital differentiation. Comparison of theoretical estimates and experimental results helps locate the Fe superconductors in the phase diagram. In addition, orbital physics is crucial to address the magnetic softness, the doping dependent properties, and the anisotropies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا