No Arabic abstract
We present a comparison between accurate textit{ab initio} calculations and a high-quality experimental data set (1986-2002) of electric-field gradients and magnetic hyperfine fields of Cd at different sites on Ni, Cu, Pd and Ag surfaces. Experiments found a systematic rule to assign surface sites on (100) and (111) surfaces based on the main component of the electric-field gradient, a rule that does not work for (110) surfaces. Our calculations show that this particular rule is a manifestation of a more general underlying systematic behavior. When looked upon from this point of view, (100), (111) emph{and} (110) surfaces behave in precisely the same way. The experimentally observed parabolic coordination number dependence of the Cd magnetic hyperfine field at Ni surfaces is verified as a general trend, but we demonstrate that individual cases can significantly deviate from it. It is shown that the hyperfine fields of other 5sp impurities at Ni surfaces have their own, typical coordination number dependence. A microscopic explanation for the different dependencies is given in terms of the details of the s-DOS near the Fermi level.
We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of the island size and approaches unity for very large islands. This is due to a crossover from periphery dominated mass transport to a regime where vacancies diffuse inside the island. The effective scaling exponents are in good agreement with theory and experiments.
The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.
We use first-principles methods to investigate the adsorption of Cu, Pb, Ag, and Mg onto a H-terminated Si surface. We show that Cu and Pb can adsorb strongly while Ag and Mg are fairly inert. In addition, two types of adsorption states are seen to exist for Pb. We also study the clustering energetics of Cu and Pb on the surface and find that while Cu clusters eagerly, Pb may prefer to form only small clusters of a few atoms. This kind of behavior of impurities is incorporated in kinetic Monte Carlo simulations of wet etching of Si. The simulation results agree with experiments supporting the idea that micromasking by Cu clusters and Pb atoms is the mechanism through which these impurities affect the etching process.
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property which discriminates in a very sharp, quantitative, way between different kinds of bonding. ELF shows that in the bulk of Al the electron distribution is essentially jelliumlike, while what happens at the surface strongly depends on packing. At the least packed surface, Al(110), ELF indicates a free-atom nature of the electron distribution in the outer region. The most packed surface, Al(111), is instead at the opposite end, and can be regarded as a jellium surface weakly perturbed by the presence of the ionic cores.
A new value for the hyperfine magnetic field of copper impurities in iron is obtained by combining resonance frequencies from experiments involving {beta}-NMR on oriented nuclei on 59-Cu, 69-Cu, and 71-Cu with magnetic moment values from collinear laser spectroscopy measurements on these isotopes. The resulting value, i.e., Bhf(CuFe) = -21.794(10) T, is in agreement with the value adopted until now but is an order of magnitude more precise. It is consistent with predictions from ab initio calculations. Comparing the hyperfine field values obtained for the individual isotopes, the hyperfine anomalies in Fe were determined to be 59{Delta}69=0.15(9)% and 71{Delta}69=0.07(11)%.