Do you want to publish a course? Click here

Exchange Biasing of the Ferromagnetic Semiconductor Ga1-xMnxAs

372   0   0.0 ( 0 )
 Added by Nitin Samarth
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the exchange coupling of a ferromagnetic semiconductor (Ga1-xMnxAs) with an overgrown antiferromagnet (MnO). Unlike most conventional exchange biased systems, the blocking temperature of the antiferromagnet (T_B = 48 +- 2 K) and the Curie temperature of the ferromagnet (T_C = 55.1 +- 0.2 K) are comparable. The resulting exchange bias manifests itself as a clear shift in the magnetization hysteresis loop when the bilayer is cooled in the presence of an applied magnetic field and an enhancement of the coercive field.



rate research

Read More

We provide an overview of progress on the exchange biasing of a ferromagnetic semiconductor (Ga1-xMnxAs) by proximity to an antiferromagnetic oxide layer (MnO). We present a detailed characterization study of the antiferromagnetic layer using Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, transmission electron microscopy, and x-ray reflection. In addition, we describe the variation of the exchange and coercive fields with temperature and cooling field for multiple samples.
Specific heat measurements were used to study the magnetic phase transition in Ga1-xMnxAs. Two different types of Ga1-xMnxAs samples have been investigated. The sample with a Mn concentration of 1.6% shows insulating behavior, and the sample with a Mn concentration of 2.6% is metallic. The temperature dependence of the specific heat for both samples reveals a pronounced lambda-shaped peak near the Curie temperature, which indicates a second-order phase transition in these samples. The critical behavior of the specific heat for Ga1-xMnxAs samples is consistent with the mean-field behavior with Gaussian fluctuations of the magnetization in the close vicinity of TC.
High- and low-field magneto-transport measurements, as well as SQUID measurements of magnetization, were carried out on Ga1-xMnxAs epilayers grown by low temperature molecular beam epitaxy, and subsequently annealed under various conditions. We observe a large enhancement of ferromagnetism when the samples are annealed at an optimal temperature, typically about 280 0C. Such optimal annealing leads to an increase of Curie temperature, accompanied by an increase of both the conductivity and the saturation magnetization. A decrease of the coercive field and of magnetoresistivity is also observed for Ga1-xMnxAs annealed at optimal conditions. We suggest that the experimental results reported in this paper are related to changes in the domain structure of Ga1-xMnxAs.
253 - Y. Nishitani , D. Chiba , M. Endo 2010
The Curie temperature TC is investigated as a function of the hole concentration p in thin films of ferromagnetic semiconductor (Ga,Mn)As. The magnetic properties are probed by transport measurements and p is varied by the application of an external electric field in a field-effect transistor configuration. It is found that TC is proportional to p^{gamma}, where the exponent gamma = 0.19 pm 0.02 over a wide range of Mn compositions and channel thicknesses. The magnitude of gamma is reproduced by a p-d Zener model taking into account nonuniform hole distribution along the growth direction, determined by interface states and the applied gate electric fields.
The Mott relation between the electrical and thermoelectric transport coefficients normally holds for phenomena involving scattering. However, the anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit interaction. In this work, we have simultaneously measured AHE and the anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films, and observed an exceptionally large ANE at zero magnetic field. We further show that AHE and ANE share a common origin and demonstrate the validity of the Mott relation for the anomalous transport phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا