Do you want to publish a course? Click here

Correlation Length Exponent in the Three-Dimensional Fuse Network

171   0   0.0 ( 0 )
 Added by Alex Hansen
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present numerical measurements of the critical correlation length exponent nu in the three-dimensional fuse model. Using sufficiently broad threshold distributions to ensure that the system is the strong-disorder regime, we determine nu to be nu = 0.86 +/- 0.06 based on analyzing the fluctuations of the survival probability. The value we find for nu is very close to the percolation value 0.88 and we propose that the three-dimensional fuse model is in the universality class of ordinary percolation.



rate research

Read More

We propose a mean field theory for the localization of damage in a quasistatic fuse model on a cylinder. Depending on the quenched disorder distribution of the fuse thresholds, we show analytically that the system can either stay in a percolation regime up to breakdown, or start at some current level to localize starting from the smallest scale (lattice spacing), or instead go to a diffuse localization regime where damage starts to concentrate in bands of width scaling as the width of the system, but remains diffuse at smaller scales. Depending on the nature of the quenched disorder on the fuse thresholds, we derive analytically the phase diagram of the system separating these regimes and the current levels for the onset of these possible localizations. We compare these predictions to numerical results.
The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surprisingly, there is no direct measure of the chaotic behavior of such systems. Here, we discuss the dynamical phase transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically computed by following the dynamical evolution in tangent space for up to one million SPPs. As discontinuities in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We find that there is chaotic behavior in the disordered phase, which supports the claim that the LLE can be useful as an indicator of phase transitions even for this out-of-equilibrium system.
127 - Anna Carbone 2007
We propose an algorithm to estimate the Hurst exponent of high-dimensional fractals, based on a generalized high-dimensional variance around a moving average low-pass filter. As working examples, we consider rough surfaces generated by the Random Midpoint Displacement and by the Cholesky-Levinson Factorization algorithms. The surrogate surfaces have Hurst exponents ranging from 0.1 to 0.9 with step 0.1, and different sizes. The computational efficiency and the accuracy of the algorithm are also discussed.
We measure the two-point correlation of free Voronoi volumes in binary disc packings, where the packing fraction $phi_{rm avg}$ ranges from 0.8175 to 0.8380. We observe short-ranged correlations over the whole range of $phi_{rm avg}$ and anti-correlations for $phi_{rm avg}>0.8277$. The spatial extent of the anti-correlation increases with $phi_{rm avg}$ while the position of the maximum of the anti-correlation and the extent of the positive correlation shrink with $phi_{rm avg}$. We conjecture that the onset of anti-correlation corresponds to dilatancy onset in this system.
135 - A. G. Cunha Netto 2006
Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا