Do you want to publish a course? Click here

Wang-Landau sampling in three-dimensional polymers

136   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.



rate research

Read More

In this work, we present a comparative study of the accuracy provided by the Wang-Landau sampling and the Broad Histogram method to estimate de density of states of the two dimensional Ising ferromagnet. The microcanonical averages used to describe the thermodynamic behaviour and to use the Broad Histogram method were obtained using the single spin-flip Wang-Landau sampling, attempting to convergence issues and accuracy improvements. We compare the results provided by both techniques with the exact ones for thermodynamic properties and critical exponents. Our results, within the Wang-Landau sampling, reveal that the Broad Histogram approach provides a better description of the density of states for all cases analysed.
The Wang-Landau method is used to study the magnetic properties of the giant paramagnetic molecule Mo_72Fe_30 in which 30 Fe3+ ions are coupled via antiferromagnetic exchange. The two-dimensional density of states g(E,M) in energy and magnetization space is calculated using a self-adaptive version of the Wang-Landau method. From g(E,M) the magnetization and magnetic susceptibility can be calculated for any temperature and external field.
We present a Monte Carlo method that allows efficient and unbiased sampling of Hamiltonian walks on a cubic lattice. Such walks are self-avoiding and visit each lattice site exactly once. They are often used as simple models of globular proteins, upon adding suitable local interactions. Our algorithm can easily be equipped with such interactions, but we study here mainly the flexible homopolymer case where each conformation is generated with uniform probability. We argue that the algorithm is ergodic and has dynamical exponent z=0. We then use it to study polymers of size up to 64^3 = 262144 monomers. Results are presented for the effective interaction between end points, and the interaction with the boundaries of the system.
We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.
We present modified Wang-Landau algorithm for models with continuous degrees of freedom. We demonstrate this algorithm with the calculation of the joint density of states $g(M,E)$ of ferromagnet Heisenberg models. The joint density of states contains more information than the density of states of a single variable--energy, but is also much more time-consuming to calculate. We discuss the strategies to perform this calculation efficiently for models with several thousand degrees of freedom, much larger than other continuous models studied previously with the Wang-Landau algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا