No Arabic abstract
The surface stress and the contact potential differences of elastically deformed faces of Al, Cu, Au, Ni, and Ti crystals are calculated within the modified stabilized jellium model using the self-consistent Kohn-Sham method. The obtained values of the surface stress are in agreement with the results of the available first-principal calculations. We find that the work function decreases/increases linearly with elongation/compression of crystals. Our results confirm that the available experimental data for the contact potential difference obtained for the deformed surface by the Kelvin method do not correspond to the change of the work function but to the change of the surface potential. The problem of anisotropy of the work function and ionization potential of finite sample is discussed.
We perform detailed numerical simulations of field ion microscopy images of faceted crystals and compare them with experimental observations. In contrast to the case of crystals with a smooth surface, for a faceted topography we find extreme deformations of the ion image. Local magnification is highly inhomogeneous and may vary by an order of magnitude: from 0.64 to 6.7. Moreover, the anisotropy of the magnification at a point located on the facet edge may reach a factor of 10.
Ferroelectric field-effect transistors (Fe-FETs) with ferroelectric hafnium oxide (FE HfO2) as gate insulator are being extensively explored as a promising device candidate for three-dimensional (3D) NAND memory application. FE HfO2 exhibits long retention over 10 years, high endurance over 1012 cycles, high speed with sub-ns polarization switching, and high remnant polarization of 10-30 {mu}C/cm2. However, the performance of Fe-FETs is known to be much worse than FE HfO2 capacitors, which is not completely understood. In this work, we developed a comprehensive Fe-FET model based on a charge balance framework. The role of charge balance and the impact of leakage-assist-switching mechanism on the memory characteristics of Fe-FETs with M/FE/DE/S (Metal/Ferroelectric/Dielectric/Semiconductor) gate stack is studied. It is found that the FE/DE interface and DE layer instead of FE layer is critical to determine the memory characteristics of Fe-FETs, and experimental Fe-FETs can be well explained by this model, where the discrepancy between FE capacitors and Fe-FETs are successfully understood.
We present a theoretical framework allowing to properly address the nature of surface-like eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 micron, deposited over a semi-infinite silicon substrate. In surface-based phononic crystals there is no distinction between the eigenmodes of the periodically nanostructured overlayer and the surface acoustic modes of the semi-infinite substrate, the solution of the elastic equation being a pseudo-surface acoustic wave partially localized on the nanostructures and radiating energy into the bulk. This problem is particularly severe in the hypersonic frequency range, where semi-infinite substrates surface acoustic modes strongly couple to the periodic overlayer, thus preventing any perturbative approach. We solve the problem introducing a surface-likeness coefficient as a tool allowing to find pseudo-surface acoustic waves and to calculate their line shapes. Having accessed the pseudo-surface modes of the composite structure, the same theoretical frame allows reporting on the gap opening in the now well-defined pseudo-SAW frequency spectrum. We show how the filling fraction, mass loading and geometric factors affect both the frequency gap, and how the mechanical energy is scattered out of the surface waveguiding modes.
We predict spin Hall angles up to 80% for ultrathin noble metal films with substitutional Bi impurities. The colossal spin Hall effect is caused by enhancement of the spin Hall conductivity in reduced sample dimension and a strong reduction of the charge conductivity by resonant impurity scattering. These findings can be exploited to create materials with high efficiency of charge to spin current conversion by strain engineering.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tuning the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.