No Arabic abstract
We have fabricated 5nm-high Fe(110) stripes by self-organized (SO) growth on a slightly vicinal R(110)/Al2O3(11-20) surface, with R=Mo, W. Remanence, coercivity and domain patterns were observed at room temperature (RT). This contrasts with conventional SO epitaxial systems, that are superparamagnetic or even non-magnetic at RT due to their flatness. Our process should help to overcome superparamagnetism without compromise on the lateral size if SO systems are ever to be used in applications.
Electrically interfacing atomically thin transition metal dichalcogenide semiconductors (TMDSCs) with metal leads is challenging because of undesired interface barriers, which have drastically constrained the electrical performance of TMDSC devices for exploring their unconventional physical properties and realizing potential electronic applications. Here we demonstrate a strategy to achieve nearly barrier-free electrical contacts with few-layer TMDSCs by engineering interfacial bonding distortion. The carrier-injection efficiency of such electrical junction is substantially increased with robust ohmic behaviors from room to cryogenic temperatures. The performance enhancements of TMDSC field-effect transistors are well reflected by the ultralow contact resistance (down to 90 Ohm um in MoS2, towards the quantum limit), the ultrahigh field-effect mobility (up to 358,000 cm2V-1s-1 in WSe2) and the prominent transport characteristics at cryogenic temperatures. This method also offers new possibilities of the local manipulation of structures and electronic properties for TMDSC device design.
We report a comprehensive study on the electrochemical performance of four different Transition Metal Oxides encapsulated inside carbon nanotubes (CNT). Irrespective of the type of oxide-encapsulate, all these samples exhibit superior cyclic stability as compared to the bare-oxide. Innovative use of camphor during sample synthesis enables precise control over the morphology of these self-organized carbon nanotube structures, which in turn appears to play a crucial role in the magnitude of the specific capacity. A comparative evaluation of the electrochemical data on different samples bring forward interesting inferences pertaining to the morphology, filling fraction of the oxide-encapsulate, and the presence of oxide nano-particles adhering outside the filled CNT. Our results provides useful pointers towards the optimization of critical parameters, thus paving the way for using these synthetically encapsulated and self-organized carbon nanotube structures as anode materials for Li-ion batteries, and possibly other electrochemical applications.
We propose systems with structures defined by self-assembled triply periodic minimal surfaces (STPMS) as candidates for photonic bandgap materials. To support our proposal we have calculated the photonic bands for different STPMS and we have found that, at least, the double diamond and gyroid structures present full photonic bandgaps. Given the great variety of systems which crystalize in these structures, the diversity of possible materials that form them and the range of lattice constants they present, the construction of photonic bandgap materials with gaps in the visible range may be presently within reach.
We studied the dynamic magnetic properties of plane periodical arrays of circular permalloy nano-dots fabricated using a self-organized mask formed by polysterene nanospheres on the surface of a Permalloy film. Conventional (microwave cavity) and broadband coplanar-line ferromagnetic resonance setups were used for the measurements. We found several well resolved resonance peaks. This result shows that the self-organized mask fabrication technique is able to produce high-quality samples with small dispersion of geometrical and magnetic parameters.
The millimeter sized monolayer and bilayer 2H-MoTe2 single crystal samples are prepared by a new mechanical exfoliation method. Based on such high-quality samples, we report the first direct electronic structure study on them, using standard high resolution angle-resolved photoemission spectroscopy (ARPES). A direct band gap of 0.924eV is found at K in the rubidium-doped monolayer MoTe2. Similar valence band alignment is also observed in bilayer MoTe2,supporting an assumption of a analogous direct gap semiconductor on it. Our measurements indicate a rather large band splitting of 212meV at the valence band maximum (VBM) in monolayer MoTe2, and the splitting is systematically enlarged with layer stacking, from monolayer to bilayer and to bulk. Meanwhile, our PBE band calculation on these materials show excellent agreement with ARPES results. Some fundamental electronic parameters are derived from the experimental and calculated electronic structures. Our findings lay a foundation for further application-related study on monolayer and bilayer MoTe2.