No Arabic abstract
It was recently demonstrated that the anisotropic phonon heat transport behavior is a good probe of the stripe formation in La_{2-x}Sr_xCuO_4 (LSCO) [X. F. Sun {it et al.}, Phys. Rev. B {bf 67}, 104503 (2003)]. Using this probe, we examined an electron-doped cuprate Pr_{1.3-x}La_{0.7}Ce_xCuO_4 (PLCCO) and found that essentially the same features as those in LSCO are observed. Moreover, the in-plane resistivity rho_{ab} of lightly-doped PLCCO shows metallic behavior (drho_{ab}/dT > 0) in the Neel ordered state with a mobility comparable to that in LSCO. It is discussed that these peculiar properties in common with LSCO signify the existence of stripes in electron-doped cuprates.
We use transport and neutron-scattering measurements to show that a magnetic-field-induced transition from noncollinear to collinear spin arrangement in adjacent CuO_{2} planes of lightly electron-doped Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4} (x=0.01) crystals affects significantly both the in-plane and out-of-plane resistivity. In the high-field collinear state, the magnetoresistance (MR) does not saturate, but exhibits an intriguing four-fold-symmetric angular dependence, oscillating from being positive at B//[100] to being negative at B//[110]. The observed MR of more than 30% at low temperatures induced by a modest modification of the spin structure indicates an unexpectedly strong spin-charge coupling in electron-doped cuprates.
Resistivity and magnetization measurements are used for studying the transverse sliding of AF domain boundaries in lightly doped La_{2-x}Sr_{x}CuO_{4}. We discuss that it is the freezing of the transverse boundary motion that is responsible for the appearance of ``spin-glass features at low temperatures.
For electron-doped cuprates, the strong suppression of antiferromagnetic spin correlation by efficient reduction annealing by the protect-annealing method leads to superconductivity not only with lower Ce concentrations but also with higher transition temperatures. To reveal the nature of this superconducting state, we have performed angle-resolved photoemission spectroscopy measurements of protect-annealed electron-doped superconductors Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_{4}$ and directly investigated the superconducting gap. The gap was found to be consistent with $d$-wave symmetry, suggesting that strong electron correlation persists and hence antiferromagnetic spin fluctuations remain a candidate that mediates Copper pairing in the protect-annealed electron-doped cuprates.
The pairing state symmetry of the electron-doped cuprate superconductors is thought to be s-wave in nature, in contrast with their hole-doped counterparts which exhibit a d-wave symmetry. We re-examine this issue based on recent improvements in our electron-doped materials and our measurement techniques. We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth of Pr_(2-x)Ce_(x)CuO_(4-y) and Nd_(2-x)Ce_(x)CuO_(4-y) crystals. Our data strongly suggest that the pairing symmetry in these materials is not s-wave.
We present a study of the magnetic susceptibility in carefully detwinned La_{2-x}Sr_{x}CuO_4 single crystals in the lightly-doped region (x=0-0.03), which demonstrates a remarkable in-plane anisotropy of the spin system. This anisotropy is found to persist after the long-range antiferromagnetic (AF) order is destroyed by hole doping, suggesting that doped holes break the AF order into domains in which the spin alignment is kept essentially intact. It turns out that the freezing of the spins taking place at low temperatures is also notably anisotropic, implying that the spin-glass feature is governed by the domain structure as well.