No Arabic abstract
Mn-doped wurtzite GaN epilayers have been grown by nitrogen plasma-assisted molecular beam epitaxy. Correlated SIMS, structural and magnetic measurements show that the incorporation of Mn strongly depends on the conditions of the growth. Hysteresis loops which persist at high temperature do not appear to be correlated to the presence of Mn. Samples with up to 2% Mn are purely substitutional Ga$_{1-x}$Mn$_x$N epilayers, and exhibit paramagnetic properties. At higher Mn contents, precipitates are formed which are identified as GaMn$_3$N clusters by x-ray diffraction and absorption: this induces a decrease of the paramagnetic magnetisation. Samples co-doped with enough Mg exhibit a new feature: a ferromagnetic component is observed up to $T_csim175$ K, which cannot be related to superparamagnetism of unresolved magnetic precipitates.
The magnetic properties of dilute magnetic semiconductors (DMS) are calculated from first-principles by mapping the ab initio results on a classical Heisenberg model. It is found that the range of the exchange interaction in (Ga, Mn)N is very short ranged due to the exponential decay of the impurity wave function in the gap. Curie temperatures (Tc) of DMS are calculated by using the Monte Carlo method. It is found that the Tc values of (Ga, Mn)N are very low since, due to the short ranged interaction, percolation of the ferromagnetic coupling is difficult to achieve for small concentrations.
The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormally large variations in experimental Tc values from a few K to well above room temperature. The partially dimerized Mn_2-Mn_1 distribution is found to give the highest Tc > 500 K, and in general, the presence of the Mn_2 dimer has a tendency to enhance Tc. The lowest Tc values close to zero are obtained for the Mn_4-Mn_1 and Mn_4-Mn_3 distributions.
The influence of annealing parameters - temperature and time - on the magnetic properties of As-capped (Ga,Mn)As epitaxial thin films have been investigated. The dependence of the transition temperature (Tc) on annealing time marks out two regions. The Tc peak behavior, characteristic of the first region, is more pronounced for thick samples, while for the second (`saturated) region the effect of the annealing time is more pronounced for thin samples. A right choice of the passivation medium, growth conditions along with optimal annealing parameters routinely yield Tc-values of ~ 150 K and above, regardless of the thickness of the epilayers.
The strain state and composition of a 400 nm thick (In,Ga)N layer grown by metal-organic chemical vapor deposition on a GaN template are investigated by spatially integrated x-ray diffraction and cathodoluminescence (CL) spectroscopy as well as by spatially resolved CL and energy dispersive x-ray analysis. The CL investigations confirm a process of strain relaxation accompanied by an increasing indium content toward the surface of the (In,Ga)N layer, which is known as the compositional pulling effect. Moreover, we identify the strained bottom, unstrained top, and gradually relaxed intermediate region of the (In,Ga)N layer. In addition to an increase of the indium content along the growth direction, the strain relaxation leads to an enhancement of the lateral variations of the indium distribution toward the surface.
Results of magnetisation measurements on p-type zincblende-(Ga,Mn)N are reported. In addition to a small high temperature ferromagnetic signal, we detect ferromagnetic correlation among the remaining Mn ions, which we assign to the onset of hole-mediated ferromagnetism in (Ga,Mn)N.