Do you want to publish a course? Click here

Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach

194   0   0.0 ( 0 )
 Added by Ophir
 Publication date 2003
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

We study voltage driven translocation of a single stranded (ss) DNA through a membrane channel. Our model, based on a master equation (ME) approach, investigates the probability density function (pdf) of the translocation times, and shows that it can be either double or mono-peaked, depending on the system parameters. We show that the most probable translocation time is proportional to the polymer length, and inversely proportional to the first or second power of the voltage, depending on the initial conditions. The model recovers experimental observations on hetro-polymers when using their properties inside the pore, such as stiffness and polymer-pore interaction.



rate research

Read More

185 - O. Flomenbom , J. Klafter 2003
We investigate the translocation of a single stranded DNA through a pore which fluctuates between two conformations, using coupled master equations. The probability density function of the first passage times (FPT) of the translocation process is calculated, displaying a triple, double or mono peaked behavior, depending on the interconversion rates between the conformations, the applied electric field, and the initial conditions. The cumulative probability function of the FPT, in a field-free environment, is shown to have two regimes, characterized by fast and slow timescales. An analytical expression for the mean first passage time of the translocation process is derived, and provides, in addition to the interconversion rates, an extensive characterization of the translocation process. Relationships to experimental observations are discussed.
Solid-state nanopores are single molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier limited, length dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation which includes the contribution of an entropic barrier for polymer entry.
We investigate the dynamics of DNA translocation through a nanopore using 2D Langevin dynamics simulations, focusing on the dependence of the translocation dynamics on the details of DNA sequences. The DNA molecules studied in this work are built from two types of bases $A$ and $C$, which has been shown previously to have different interactions with the pore. We study DNA with repeating blocks $A_nC_n$ for various values of $n$, and find that the translocation time depends strongly on the {em block length} $2n$ as well as on the {em orientation} of which base entering the pore first. Thus, we demonstrate that the measurement of translocation dynamics of DNA through nanopore can yield detailed information about its structure. We have also found that the periodicity of the block sequences are contained in the periodicity of the residence time of the individual nucleotides inside the pore.
We study the translocation dynamics of a polymer chain threaded through a nanopore by an external force. By means of diverse methods (scaling arguments, fractional calculus and Monte Carlo simulation) we show that the relevant dynamic variable, the translocated number of segments $s(t)$, displays an {em anomalous} diffusive behavior even in the {em presence} of an external force. The anomalous dynamics of the translocation process is governed by the same universal exponent $alpha = 2/(2 u +2 - gamma_1)$, where $ u$ is the Flory exponent and $gamma_1$ - the surface exponent, which was established recently for the case of non-driven polymer chain threading through a nanopore. A closed analytic expression for the probability distribution function $W(s, t)$, which follows from the relevant {em fractional} Fokker - Planck equation, is derived in terms of the polymer chain length $N$ and the applied drag force $f$. It is found that the average translocation time scales as $tau propto f^{-1}N^{frac{2}{alpha} -1}$. Also the corresponding time dependent statistical moments, $< s(t) > propto t^{alpha}$ and $< s(t)^2 > propto t^{2alpha}$ reveal unambiguously the anomalous nature of the translocation dynamics and permit direct measurement of $alpha$ in experiments. These findings are tested and found to be in perfect agreement with extensive Monte Carlo (MC) simulations.
We investigate the dynamics of DNA translocation through a nanopore driven by an external force using Langevin dynamics simulations in two dimensions (2D) to study how the translocation dynamics depend on the details of the DNA sequences. We consider a coarse-grained model of DNA built from two bases $A$ and $C$, having different base-pore interactions, {textit e.g.}, a strong (weak) attractive force between the pore and the base $A$ ($C$) inside the pore. From a series of studies on hetero-DNAs with repeat units $A_mC_n$, we find that the translocation time decreases exponentially as a function of the volume fraction $f_C$ of the base $C$. %($epsilon_{pC} < epsilon_{pA}$). For longer $A$ sequences with $f_C le 0.5$, the translocation time strongly depends on the orientation of DNA, namely which base enters the pore first. Our studies clearly demonstrate that for a DNA of certain length $N$ with repeat units $A_mC_n$, the pattern exhibited by the waiting times of the individual bases and their periodicity can unambiguously determine the values of $m$, $n$ and $N$ respectively. Therefore, a prospective experimental realization of this phenomenon may lead to fast and efficient sequence detection technic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا