Do you want to publish a course? Click here

Remarks on homo- and hetero-polymeric aspects of protein folding

228   0   0.0 ( 0 )
 Added by Thomas Garel
 Publication date 2003
  fields Physics
and research's language is English
 Authors T. Garel




Ask ChatGPT about the research

Different aspects of protein folding are illustrated by simplified polymer models. Stressing the diversity of side chains (residues) leads one to view folding as the freezing transition of an heteropolymer. Technically, the most common approach to diversity is randomness, which is usually implemented in two body interactions (charges, polar character,..). On the other hand, the (almost) universal character of the protein backbone suggests that folding may also be viewed as the crystallization transition of an homopolymeric chain, the main ingredients of which are the peptide bond and chirality (proline and glycine notwithstanding). The model of a chiral dipolar chain leads to a unified picture of secondary structures, and to a possible connection of protein structures with ferroelectric domain theory.



rate research

Read More

We argue that the first order folding transitions of proteins observed at physiological chemical conditions end in a critical point for a given temperature and chemical potential of the surrounding water. We investigate this critical point using a hierarchical Hamiltonian and determine its universality class. This class differs qualitatively from those of other known models.
Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressure denaturation, or the limits of temperature and pressure above which no protein has a stable, functional state, or how unfolding and aggregation are related. Here we review our results based on a theoretical approach that can rationalise the water contribution to protein solutions free energy. We show, using Monte Carlo simulations, how we can rationalise experimental data with our recent results. We discuss how our findings can help develop new strategies for the design of novel synthetic biopolymers or possible approaches for mitigating neurodegenerative pathologies.
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations $C$ and initial density $rho_{rm init}$ and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same $C$, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by $rho_{rm init}$. We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.
The disordered microphases that develop in the high-temperature phase of systems with competing short-range attractive and long-range repulsive (SALR) interactions result in a rich array of distinct morphologies, such as cluster, void cluster and percolated (gel-like) fluids. These different structural regimes exhibit complex relaxation dynamics with significant relaxation heterogeneity and slowdown. The overall relationship between structure and configurational sampling schemes, however, remains largely uncharted. In this article, the disordered microphases of a schematic SALR model are thoroughly characterized, and structural relaxation functions adapted to each regime are devised. The sampling efficiency of various advanced Monte Carlo (MC) sampling schemes--Virtual-Move (VMMC), Aggregation-Volume-Bias (AVBMC) and Event-Chain (ECMC)--is then assessed. A combination of VMMC and AVBMC is found to be computationally most efficient for cluster fluids and ECMC to become relatively more efficient as density increases. These results offer a complete description of the equilibrium disordered phase of a simple microphase former as well as dynamical benchmarks for other sampling schemes.
Neicu and Kudrolli observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon, based on a coupled system of equations for local rods density and tilt. The density evolution is described by modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type equation. Our analysis shows that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered phase appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the centers of the islands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا