Do you want to publish a course? Click here

Ultrafast Photoinduced Softening in a III-V Ferromagnetic Semiconductor for Non-thermal Magneto-Optical Recording

88   0   0.0 ( 0 )
 Added by Junichiro Kono
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Through time-resolved two-color magneto-optical Kerr spectroscopy we have demonstrated that photogenerated transient carriers decrease the coercivity of ferromagnetic InMnAs at low temperatures. This transient ``softening persists only during the carrier lifetime ($sim$ 2 ps) and returns to its original value as soon as the carriers recombine to disappear. We discuss the origin of this unusual phenomenon in terms of carrier-enhanced ferromagnetic exchange interactions between Mn ions and propose an entirely nonthermal scheme for magnetization reversal.



rate research

Read More

We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.
214 - J. Wang , X. Liu 2008
We report a femtosecond response in photoinduced magnetization rotation in the ferromagnetic semiconductor GaMnAs, which allows for detection of a four-state magnetic memory at the femtosecond time scale. The temporal profile of this cooperative magnetization rotation exhibits a discontinuity that reveals two distinct temporal regimes, marked by the transition from a highly non-equilibrium, carrier-mediated regime within the first 200 fs, to a thermal, lattice-heating picosecond regime.
389 - Aaron Patz , Tianqi Li , Xinyu Liu 2014
We directly measure the hole spin lifetime in ferromagnetic GaMnAs via time- and polarization-resolved spectroscopy. Below the Curie temperature Tc, an ultrafast photoexcitation with linearly-polarized light is shown to create a non-equilibrium hole spin population via the dynamical polarization of holes through p-d exchange scattering with ferromagnetically-ordered Mn spins, and we characterize their relaxation dynamics. The observed relaxation consists of a distinct three-step recovery : (i) femtosecond (fs) hole spin relaxation ~ $160-200 fs, (ii) picosecond (ps) hole energy relaxation ~ 1-2 ps, and (iii) a coherent, damped Mn spin precession with a period of ~ 250 ps. The transient amplitude of the hole spin component diminishes with increasing temperature, directly following the ferromagnetic order, while the hole energy amplitude shows negligible temperature change, consistent with our interpretation. Our results thus establish the hole spin lifetimes in ferromagnetic semiconductors and demonstrate a novel spectroscopy method for studying non-equilibrium hole spins in the presence of correlation and magnetic order.
Diluted ferromagnetic semiconductors (DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronics (spintronics) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in III-V (Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature $T_C$ of 230 K has been achieved in (Ba,K)(Zn,Mn)$_2$As$_2$. However, most DMSs, including (Ga,Mn)As, are p-type, i.e., the carriers that mediate ferromagnetism are holes. For practical applications, DMS with n-type carriers are also advantageous. Here we report the successful synthesis of a II-II-V diluted ferromagnetic semiconductor with n-type carriers, Ba(Zn,Co)$_2$As$_2$. Magnetization measurements show that the ferromagnetic transition occurs up to $T_{C} sim$ 45 K. Hall effect and Seebeck effect measurements jointly confirm that the dominant carriers are electrons. Through muon spin relaxation ($mu$SR), a volume sensitive magnetic probe, we have also confirmed that the ferromagnetism in Ba(Zn,Co)$_2$As$_2$ is intrinsic and the internal field is static.
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is observed at the As K absorption edge, yielding an As 4p orbital magnetic moment of around -0.1 Bohr magnetons per valence band hole. This is strongly influenced by strain, indicating its crucial influence on the magnetic anisotropy. The dichroism at the Ga K edge is much weaker. The K edge XMCD signals for Mn and As both have positive sign, which indicates the important contribution of Mn 4p states to the Mn K edge spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا