Angle-resolved photoemission spectroscopy (ARPES) is used to study the mass renormalization of the charge carriers in the high-T_c superconductor (Pb,Bi)_2Sr_2CaCu_2O_8 in the vicinity of the (pi,0) point in the superconducting and the normal state. Using matrix element effects at different photon energies and due to a high momentum and energy resolution the bonding and the antibonding bands could be separated in the whole dopant range. A huge anisotropic coupling to a bosonic collective mode is observed below T_c for both bands in particular for the underdoped case. Above T_c, the more isotropic coupling to a continuum or a mode at much higher energy is significantly weaker.
Angle-resolved photoemission spectroscopy (ARPES) is used to study the spectral function of the optimally doped high-T$_c$ superconductor (Bi,Pb)$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ in the vicinity of the antinodal point in the superconducting state. Using a parameterized self-energy function, it was possible to describe both the coherent and the incoherent spectral weight of the bonding and the antibonding band. The renormalization effects can be assigned to a very strong coupling to the magnetic resonance mode and at higher energies to a bandwidth renormalization by a factor of two, probably caused by a coupling to a continuum. The present reevaluation of the ARPES data allows to come to a more reliable determination of the value of the coupling strength of the charge carriers to the mode. The experimental results for the dressing of the charge carriers are compared to theoretical models.
We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band and is antisymmetric with respect to reflections in both mirror planes parallel to the c-axis. Using this property of the energy and momentum intensity distributions we prove the existence of the bilayer splitting in the normal state of the underdoped compound and compare its value with the splitting in overdoped sample. In agreement with previous studies the magnitude of the interlayer coupling does not depend significantly on doping. We also discuss possible origins of the observed dichroism.
Both electronic Raman scattering (ERS) and angle-resolved photoemission spectra (ARPES) revealed two energy scales for the gap in different momentum spaces in the cuprates. However, the interpretations were different, and the gap values were also different in two experiments. In order to clarify the origin of these discrepancies, we directly compared ERS and ARPES by calculating ERS from the experimental data of ARPES through the Kubo formula. The calculated ERS spectra were in good agreement with the experimental results except for the B$_{1g}$ peak energies. The doping-dependent B$_{2g}$ peak energy was well reproduced from a doping-independent d-wave gap deduced from ARPES, by assuming a particular spectral weight distribution along the Fermi surface. The B$_{1g}$ peak energies could not be reproduced by the ARPES data. The difference between B$_{1g}$ ERS and antinodal ARPES became larger with underdoping, which implies that the effect of the pseudogap is different in these two techniques.
Angle-resolved photoemission spectroscopy (ARPES) is used to study the doping dependence of the lifetime and the mass renormalization of the low energy excitations in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8 along the zone diagonal. We find a linear energy de-pendence of the scattering rate for the underdoped samples and a quadratic energy depend-ence in the overdoped case. The mass enhancement of the quasiparticles due to the many body effects at the Fermi energy is found to be in the order of 2 and the renormalization extends over a large energy range for both the normal and the superconducting state. The much discussed kink in the dispersion around 70 meV is interpreted as a small additional effect at low temperatures.
In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materials, that point seems to coincide with a Lifshitz transition, where the Fermi surface changes from the hole-like centered at ($pi, pi$) to the electron-like, centered at the $Gamma$ point causing a loss of large momentum anti-ferromagnetic fluctuations. Here, we study the doping dependence of the electronic structure of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+delta}$ in angle-resolved photoemission and find that the superconductivity vanishes at lower doping than at which the Lifshitz transition occurs. This requires a more detailed re-examination of a spin-fluctuation scenario.
T.K. Kim
,A.A. Kordyuk
,S.V. Borisenko
.
(2003)
.
"Doping dependence of the mass enhancement in (Pb,Bi)_2 Sr_2 Ca Cu_2 O_8 at the antinodal point in the superconducting and normal state"
.
J. Fink
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا