Do you want to publish a course? Click here

A reevaluation of the coupling to a bosonic mode of the charge carriers in (Bi,Pb)$_2$Sr$_2$CaCu$_2$O$_{8+delta} $ at the antinodal point

74   0   0.0 ( 0 )
 Added by J. Fink
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angle-resolved photoemission spectroscopy (ARPES) is used to study the spectral function of the optimally doped high-T$_c$ superconductor (Bi,Pb)$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ in the vicinity of the antinodal point in the superconducting state. Using a parameterized self-energy function, it was possible to describe both the coherent and the incoherent spectral weight of the bonding and the antibonding band. The renormalization effects can be assigned to a very strong coupling to the magnetic resonance mode and at higher energies to a bandwidth renormalization by a factor of two, probably caused by a coupling to a continuum. The present reevaluation of the ARPES data allows to come to a more reliable determination of the value of the coupling strength of the charge carriers to the mode. The experimental results for the dressing of the charge carriers are compared to theoretical models.



rate research

Read More

Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high superconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.
We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band and is antisymmetric with respect to reflections in both mirror planes parallel to the c-axis. Using this property of the energy and momentum intensity distributions we prove the existence of the bilayer splitting in the normal state of the underdoped compound and compare its value with the splitting in overdoped sample. In agreement with previous studies the magnitude of the interlayer coupling does not depend significantly on doping. We also discuss possible origins of the observed dichroism.
A magnetic field applied to type-II superconductors introduces quantized vortices that locally quench superconductivity, providing a unique opportunity to investigate electronic orders that may compete with superconductivity. This is especially true in cuprate superconductors in which mutual relationships among superconductivity, pseudogap, and broken-spatial-symmetry states have attracted much attention. Here we observe energy and momentum dependent bipartite electronic superstructures in the vortex core of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using spectroscopic-imaging scanning tunneling microscopy (SI-STM). In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we show that the quasiparticle scattering off vortices generates the electronic superstructure known as vortex checkerboard. In the high-energy region where the pseudogap develops, vortices amplify the broken-spatial-symmetry patterns that preexist in zero field. These data reveal canonical d-wave superconductivity near the node, yet competition between superconductivity and broken-spatial-symmetry states near the antinode.
We re-examined the angular dependence of the radiation from the intrinsic Josephson junctions in rectangular mesas of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, in order to determine if the cavity mode part of the radiation arises from waves across the width $w$ or along the length $ell$ of the mesas, associated with ``hot spots [Wang {it et al.}, Phys. Rev. Lett. {bf 105}, 057002 (2010)]. We derived analytic forms for the angular dependence expected in both cases for a general cavity mode in which the width of the mesa corresponds to an integer multiple of one-half the wavelength of the radiation. Assuming the coherent radiation from the $ac$ Josephson current source and the cavity magnetic surface current density source combine incoherently, fits to the data of Kadowaki {it et al.} [J. Phys. Soc. Jpn. {bf 79}, 023703 (2010)] on a mesa with mean $ell/w=5.17$ for both wave directions using two models for the incoherent combination were made, which correspond to standing and traveling waves, respectively. The results suggest that the combined output from the uniform $ac$ Josephson current source plus a cavity wave forming along the rectangle length is equally probable as that of the combined output from the uniform $ac$ Josephson current plus a cavity wave across the width. However, for mesas in which $nell/2w$ is integral, where $n$ is the index of the rectangular TM$^z_{n,0}$ mode, it is shown that standing cavity mode waves along the length of the mesa do not radiate in the $xz$ plane perpendicular to the length of the mesa, suggesting experiments on such mesas could help to resolve the question.
103 - S. P. Zhao , X. B. Zhu , Y. F. Wei 2007
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temperature-dependent measurement. A d-wave Eliashberg analysis shows that the spectrum at 4.2 K can be well fitted by considering electron couplings to a bosonic magnetic resonance mode and a broad high-energy continuum. Above $T_c$, the spectra show a clear pseudogap that persists up to 230 K, and a crossover can be seen indicating two different pseudogap phases existing above $T_c$. The intrinsic electron tunneling nature is discussed in the analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا