No Arabic abstract
Using a scanning tunnel microscope or mechanically controlled break junctions, atomic contacts of Au, Pt and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large amount of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on even or odd numbers of atoms forming the chain. This behaviour is not only present in the monovalent metal Au, as it has been previously predicted, but is also found in the other metals which form chains suggesting it to be a universal feature of atomic wires.
The complex mechanisms governing charge migration in DNA oligomers reflect the rich structural and electronic properties of the molecule of life. Controlling the mechanical stability of DNA nanowires in charge transport experiments is a requisite for identifying intrinsic issues responsible for long range charge transfers. By merging density-functional-theory-based calculations and model-Hamiltonian approaches, we have studied DNA quantum transport during the stretching-twisting process of poly(GC) DNA oligomers. During the stretching process, local maxima in the charge transfer integral t between two nearest-neighbor GC pairs arise from the competition between stretching and twisting. This is reflected in local maxima for the conductance, which depend very sensitively on the coupling to the electrodes. In the case of DNA-electrode couplings smaller than t, the conductance versus stretching distance saturates to plateau in agreement with recent experimental observations.
Nanowires of different nature have been shown to self-assemble as a function of stress at the contact between two macroscopic metallic leads. Here we demonstrate for gold wires that the balance between various metastable nanowire configurations is influenced by the microstructure of the starting materials and we discover a new set of periodic structures, which we interpret as due to the atomic discreteness of the contact size for the three principal crystal orientations.
We study the conductance threshold of clean nearly straight quantum wires in the magnetic field. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with planar geometry and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h) are related to a singlet resonance and a triplet resonance, respectively, and survive to temperatures of a few degrees. With increasing in-plane magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.
We study the conductance of a quantum wire in the presence of weak electron-electron scattering. In a sufficiently long wire the scattering leads to full equilibration of the electron distribution function in the frame moving with the electric current. At non-zero temperature this equilibrium distribution differs from the one supplied by the leads. As a result the contact resistance increases, and the quantized conductance of the wire acquires a quadratic in temperature correction. The magnitude of the correction is found by analysis of the conservation laws of the system and does not depend on the details of the interaction mechanism responsible for equilibration.
We investigated the magnetotransport properties of mesoscopic platinum nanostructures (wires and rings) with sub-100 nm lateral dimensions at very low temperatures. Despite the strong spin-orbit interaction in platinum, oscillations of the conductance as a function of the external magnetic field due to quantum interference effects was found to appear. The oscillation was decomposed into Aharonov-Bohm periodic oscillations and aperiodic fluctuations of the conductance due to a magnetic flux piercing the loop of the ring and the metal wires forming the nanostructures, respectively. We also investigated the magnetotransport under different bias currents to explore the interplay between electron phase coherence and spin accumulation effects in strong spin-orbit conductors.