Do you want to publish a course? Click here

Fluxoid dynamics in superconducting thin film rings

287   0   0.0 ( 0 )
 Added by J. R. Kirtley
 Publication date 2003
  fields Physics
and research's language is English
 Authors J.R. Kirtley




Ask ChatGPT about the research

We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, using a variable sample temperature scanning SQUID microscope. These results can be qualitatively described using a model in which the fluxoid number changes by thermally activated nucleation of a Pearl vortex in, and transport of the Pearl vortex across, the ring wall.



rate research

Read More

50 - J. R. Kirtley , 2003
We have observed spontaneous fluxoid generation in thin-film rings of the amorphous superconductor Mo$_3$Si, cooled through the normal-superconducting transition, as a function of quench rate and externally applied magnetic field, using a variable sample temperature scanning SQUID microscope. Our results can be explained using a model of freezout of thermally activated fluxoids, mediated by the transport of bulk vortices across the ring walls. This mechanism is complementary to a mechanism proposed by Kibble and Zurek, which only relies on causality to produce a freezout of order parameter fluctuations.
We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting annular ring (inner radius a, outer radius b, and thickness d<<a) when either the penetration depth obeys lambda < d/2 or, if lambda > d/2, the two-dimensional screening length obeys Lambda = 2 lambda^2/d << a for the following cases: (a) magnetic flux trapped in the hole in the absence of an applied magnetic field, (b) zero magnetic flux in the hole when the ring is subjected to an applied magnetic field, and (c) focusing of magnetic flux into the hole when a magnetic field is applied but no net current flows around the ring. We use a similar method to calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-free superconducting disk (radius b) containing a dome of magnetic flux of radius a when flux entry is impeded by a geometrical barrier.
125 - Y. Zhang , J. J. Lee , R. G. Moore 2015
Fermi surface topology and pairing symmetry are two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature (Tc) over 77 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1ML FeSe using angle-resolved photoemission spectroscopy (ARPES). Two ellipse-like electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which put strong constraints on determining the pairing symmetry. The gap maxima locate along the major axis of ellipse, which cannot be explained by a single d-wave, extended s-wave, or s$pm$ gap function. Four gap minima are observed at the intersection of electron pockets suggesting the existence of either a sign change or orbital-dependent pairing in 1ML FeSe.
A simple method has been developed for manufacturing a thin film superconducting quantum interferometer (SQI) with ultralow inductance (~10^-13 H). Current-voltage and voltage-field characteristics of the SQI are presented. The basic design equations are obtained and confirmed experimentally. The SQI has been used for the first time to determine the penetration depth of a magnetic field into a film of 50% In-50% Sn alloy.
The dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders is experimentally investigated. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 10 - 20 Oe and duration of a few $mu$s. The jumps take place when the total current in the wall, not the current density, exceeds some critical value. In addition there are small jumps and/or smooth penetration, and their contribution can reach 20% of the total penetrating flux. It is demonstrated that the magnetic field inside the cylinder exhibits several oscillations. The number of giant jumps reduces with temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا