Do you want to publish a course? Click here

New Aspects of the Temperature-Magnetic Field Phase Diagram of CeB6

81   0   0.0 ( 0 )
 Added by Donavan Hall
 Publication date 2003
  fields Physics
and research's language is English
 Authors R.G. Goodrich




Ask ChatGPT about the research

We have measured the magnetic field dependence of the paramagnetic to the field-induced high temperature antiferroquadrupolar magnetically ordered phase transition is CeB6 from 0 to 60 T using a variety of techniques. It is found that the field-dependent phase separation line becomes re-entrant above 35 T and below 10 K. Measurements of resonant ultra-sound, specific heat and neutron diffraction show conclusively that the zero-field temperature-dependent phase transition is to a state with no ordered dipole moments, but with second order transition signatures in both sound attenuation and specific heat.



rate research

Read More

We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggested to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.
We report the temperature-pressure-magnetic field phase diagram of the ferromagnetic Kondo-lattice CeTiGe$_3$ determined by means of electrical resistivity measurements. Measurements up to $sim$ 5.8 GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe$_3$ orders ferromagnetically at $T_text{C}$ = 14 K. Application of pressure suppresses $T_text{C}$, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for $p$ $>$ 4.1 GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3 GPa. The critical pressures for the presumed quantum phase transitions are $p_1$ $cong$ 4.1 GPa and $p_2$ $cong$ 5.3 GPa. Above 4.1 GPa, application of magnetic field shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8 T at 5.4 GPa, where the first order antiferromagnetic-ferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.
In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components, indicating that it is a doublet. Here we employ inelastic neutron scattering (INS) to scrutinize the field dependence of spin fluctuations in CeB6. The exciton shows a markedly different behavior without any field splitting. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a non-monotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.
We have measured the specific heat of the S = 1/2 alternating Heisenberg antiferromagnetic chain compound pentafluorophenyl nitronyl nitroxide in magnetic fields using a single crystal and powder. A sharp peak due to field-induced magnetic ordering (FIMO) is observed in both samples. The H-T phase boundary of the FIMO of the single crystal is symmetric with respect to the central field of the gapless field region HC1 < H < HC2, whereas it is distorted for the powder whose ordering temperatures are lower. An analysis employing calculations based on the finite temperature density matrix renormalization group indicates the possibility of novel incommensurate ordering due to frustration in the powder around the central field.
Recently, Yb-based triangular lattice antiferromagnets have garnered significant interest as possible quantum spin liquid candidates. One example is YbMgGaO4, which showed many promising spin liquid features, but also possesses a high degree of disorder owing to site-mixing between the non-magnetic cations. To further elucidate the role of chemical disorder and to explore the phase diagram of these materials in applied field, we present neutron scattering and sensitive magnetometry measurements of the closely related compound, YbZnGaO4. Our results suggest a difference in magnetic anisotropy between the two compounds, and we use key observations of the magnetic phase crossover to motivate an exploration of the field- and exchange parameter-dependent phase diagram, providing an expanded view of the available magnetic states in applied field. This enriched map of the phase space serves as a basis to restrict the values of parameters describing the magnetic Hamiltonian with broad application to recently discovered related materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا