No Arabic abstract
MgB2 samples prepared by solid-state reaction were investigated using high-resolution transmission electron microscopy (HREM), X-ray energy-dispersive spectroscopy (EDX), electron energy-loss spectroscopy (EELS), and energy-filtered imaging. Large amounts of coherent precipitates with a size range from about 5 nm up to about 100 nm were found in the MgB2 crystallite matrices. The precipitates are of different shapes including sphere, ellipsoid, and faceted polyhedron depending on the size of the precipitates. EDX and EELS analyses confirm that smaller precipitates contain magnesium, boron and oxygen while larger faceted precipitates contain mainly magnesium and oxygen, implying that the oxygen content increases with precipitate size. HREM and electron diffraction investigations found that the precipitates have the same crystal lattice structure as that of MgB2 but with various composition modulations depending on the composition of the precipitates. The precipitates transform to the MgO phase after long exposure to residual oxygen in flowing Ar gas at high temperatures. The effect of the precipitates in different size ranges on flux pinning is discussed.
We have studied thermodynamics of the Mg-B system with the modeling technique CALPHAD using a computerized optimization procedure. Temperature-composition, pressure-composition, and pressure-temperature phase diagrams under different conditions are obtained. The results provide helpful insights into appropriate processing conditions for thin films of the superconducting phase, MgB2, including the identification of the pressure/temperature region for adsorption-controlled growth. Due to the high volatility of Mg, MgB2 is thermodynamically stable only under fairly high Mg overpressures for likely growth temperatures. This constraint places severe temperature constraints on deposition techniques employing high vacuum conditions.
High-energy (h$ u$ = 5.95 keV) synchrotron Photoemission spectroscopy (PES) is used to study bulk electronic structure of Na$_{0.35}$CoO$_{2}$.1.3H$_{2}$O, the layered superconductor. In contrast to 3-dimensional doped Co oxides, Co $it{2p}$ core level spectra show well-separated Co$^{3+}$ and Co$^{4+}$ ions. Cluster calculations suggest low spin Co$^{3+}$ and Co$^{4+}$ character, and a moderate on-site Coulomb correlation energy U$_{dd}sim$3-5.5 eV. Photon dependent valence band PES identifies Co $it{3d}$ and O $it{2p}$ derived states, in near agreement with band structure calculations.
Precipitation in Mg-Zn alloys was analyzed by means of first principles calculations. Formation energies of symmetrically distinct hcp Mg1-xZnx (0 < x < 1) configurations were determined and potential candidates for Guinier-Preston zones coherent with the matrix were identified from the convex hull. The most likely structures were ranked depending on the interface energy along the basal plane. In addition, the formation energy and vibrational entropic contributions of several phases reported experimentally (Mg4Zn7, MgZn2 cubic, MgZn2 hexagonal, Mg21Zn25 and Mg2Zn11) were calculated. The formation energies of Mg4Zn7, MgZn2 cubic, and MgZn2 hexagonal Laves phases were very close because they were formed by different arrangements of rhombohedral and hexagonal lattice units. It was concluded that beta_1^ precipitates were formed by a mixture of all of them. Nevertheless, the differences in the geometrical arrangements led to variations in the entropic energy contributions which determined the high temperature stability. It was found that the MgZn2 hexagonal Laves phase is the most stable phase at high temperature and, thus, beta_1^ precipitates tend to transform into the beta_2^ (MgZn2 hexagonal) precipitates with higher aging temperature or longer aging times. Finally, the equilibrium beta phase (Mg21Zn25) was found to be a long-range order that precipitates the last one on account of the kinetic processes necessary to trigger the transformation from a short-range order phase beta_2^ to beta .
The critical current density (Jc) of hot isostatic pressed (HIPed) MgB2 wires, measured by d.c. transport and magnetization, is compared with that of similar wires annealed at ambient pressure. The HIPed wires have a higher Jc than the annealed wires, especially at high temperatures and magnetic fields, and higher irreversibility field (Hirr). The HIPed wires are promising for applications, with Jc>106 A/cm2 at 5 K and zero field and >104 A/cm2 at 1.5 T and 26.5 K, and Hirr ~ 17 T at 4 K. The improvement is attributed to a high density of structural defects, which are the likely source of vortex pinning. These defects, observed by transmission electron microscopy, include small angle twisting, tilting, and bending boundaries, resulting in the formation of sub-grains within MgB2 crystallites.
The microstructures of MgB2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. Large amount of crystalline defects including small angle twisting, tilting, and bending boundaries, in which high densities of dislocations reside, were found forming sub-grains within MgB2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centers that contribute to the high critical current densities of the wires at high temperatures and at high fields.