No Arabic abstract
We study the effect of a one dimensional periodic potential on the dynamic structure factor of an interacting Bose Einstein condensate at zero temperature. We show that, due to phononic correlations, the excitation strength towards the first band develops a typical oscillating behaviour as a function of the momentum transfer, and vanishes at even multiples of the Bragg momentum. The effects of interactions on the static structure factor are found to be significantly amplified by the presence of the optical potential. Our predictions can be tested in stimulated photon scattering experiments.
The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and numerically in all three dimensions. Our investigation shows that the sound speed depends strongly on the strength of the lattice. In the one-dimensional case, the speed of sound falls monotonically with increasing lattice strength. The dependence on lattice strength becomes much richer in two and three dimensions. In the two-dimensional case, when the interaction is weak, the sound speed first increases then decreases as the lattice strength increases. For the three dimensional lattice, the sound speed can even oscillate with the lattice strength. These rich behaviors can be understood in terms of compressibility and effective mass. Our analytical results at the limit of weak lattices also offer an interesting perspective to the understanding: they show the lattice component perpendicular to the sound propagation increases the sound speed while the lattice components parallel to the propagation decreases the sound speed. The various dependence of the sound speed on the lattice strength is the result of this competition.
We investigate experimentally a Bose Einstein condensate placed in a 1D optical lattice whose phase or amplitude is modulated in a frequency range resonant with the first bands of the band structure. We study the combined effect of the strength of interactions and external confinement on the 1 and 2-phonon transitions. We identify lines immune or sensitive to atom-atom interactions. Experimental results are in good agreement with numerical simulations. Using the band mapping technique, we get a direct access to the populations that have undergone $n$-phonon transitions for each modulation frequency.
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole force of a rapidly scanning laser beam. This novel technique is very flexible and should be useful for the study of rotating Bose-Einstein condensates and vortices.
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system there is no thermodynamic ground state, but there may be a long-lived steady-state, described as an eigenstate of a Floquet Hamiltonian. We calculate how scattering processes lead to a decay of the Floquet state. We map out the phase diagram of the system and find regions where the BEC is stable and regions where the BEC is unstable against atomic collisions. We show that Parker et al. perform their experiment in the stable region, which accounts for the long life-time of the condensate ($sim$ 1 second). We also estimate the scattering rate of the bosons in the region where the BEC is unstable.
We report on the efficient design of quantum optimal control protocols to manipulate the motional states of an atomic Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our protocols operate on the momentum comb associated with the lattice. In contrast to previous works also dealing with control in discrete and large Hilbert spaces, our control schemes allow us to reach a wide variety of targets by varying a single parameter, the lattice position. With this technique, we experimentally demonstrate a precise, robust and versatile control: we optimize the transfer of the BEC to a single or multiple quantized momentum states with full control on the relative phase between the different momentum components. This also allows us to prepare the BEC in a given eigenstate of the lattice band structure, or superposition thereof.