Do you want to publish a course? Click here

Cycles structure and local ordering in complex networks

100   0   0.0 ( 0 )
 Added by Guido Caldarelli
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the properties of metrics aimed at the characterization of grid-like ordering in complex networks. These metrics are based on the global and local behavior of cycles of order four, which are the minimal structures able to identify rectangular clustering. The analysis of data from real networks reveals the ubiquitous presence of a high level of grid-like ordering that is non-trivially correlated with the local degree properties. These observations provide new insights on the hierarchical structure of complex networks.



rate research

Read More

296 - Alex Arenas 2003
A model of communication that is able to cope simultaneously with the problems of search and congestion is presented. We investigate the communication dynamics in model networks and introduce a general framework that enables a search of optimal structures.
The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.
We introduce a model for diffusion of two classes of particles ($A$ and $B$) with priority: where both species are present in the same site the motion of $A$s takes precedence over that of $B$s. This describes realistic situations in wireless and communication networks. In regular lattices the diffusion of the two species is normal but the $B$ particles are significantly slower, due to the presence of the $A$ particles. From the fraction of sites where the $B$ particles can move freely, which we compute analytically, we derive the diffusion coefficients of the two species. In heterogeneous networks the fraction of sites where $B$ is free decreases exponentially with the degree of the sites. This, coupled with accumulation of particles in high-degree nodes leads to trapping of the low priority particles in scale-free networks.
We investigate the wealth evolution in a system of agents that exchange wealth through a disordered network in presence of an additive stochastic Gaussian noise. We show that the resulting wealth distribution is shaped by the degree distribution of the underlying network and in particular we verify that scale free networks generate distributions with power-law tails in the high-income region. Numerical simulations of wealth exchanges performed on two different kind of networks show the inner relation between the wealth distribution and the network properties and confirm the agreement with a self-consistent solution. We show that empirical data for the income distribution in Australia are qualitatively well described by our theoretical predictions.
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the Internet into the hyperbolic plane, and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of Internet routing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا