Do you want to publish a course? Click here

Critical phenomena in complex networks

139   0   0.0 ( 0 )
 Added by Sergey Dorogovtsev
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.



rate research

Read More

We define a minimal model of traffic flows in complex networks containing the most relevant features of real routing schemes, i.e. a trade--off strategy between topological-based and traffic-based routing. The resulting collective behavior, obtained analytically for the ensemble of uncorrelated networks, is physically very rich and reproduces results recently observed in traffic simulations on scale-free networks. We find that traffic control is useless in homogeneous graphs but may improves global performance in inhomogeneous networks, enlarging the free-flow region in parameter space. Traffic control also introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner.
We examine the global organization of growing networks in which a new vertex is attached to already existing ones with a probability depending on their age. We find that the network is infinite- or finite-dimensional depending on whether the attachment probability decays slower or faster than $(age)^{-1}$. The network becomes one-dimensional when the attachment probability decays faster than $(age)^{-2}$. We describe structural characteristics of these phases and transitions between them.
We examine the global organization of heterogeneous equilibrium networks consisting of a number of well distinguished interconnected parts--``communities or modules. We develop an analytical approach allowing us to obtain the statistics of connected components and an intervertex distance distribution in these modular networks, and to describe their global organization and structure. In particular, we study the evolution of the intervertex distance distribution with an increasing number of interlinks connecting two infinitely large uncorrelated networks. We demonstrate that even a relatively small number of shortcuts unite the networks into one. In more precise terms, if the number of the interlinks is any finite fraction of the total number of connections, then the intervertex distance distribution approaches a delta-function peaked form, and so the network is united.
In this paper we study the critical behavior of an $N$-component ${phi}^{4}$-model in hyperbolic space, which serves as a model of uniform frustration. We find that this model exhibits a second-order phase transition with an unusual magnetization texture that results from the lack of global parallelism in hyperbolic space. Angular defects occur on length scales comparable to the radius of curvature. This phase transition is governed by a new strong curvature fixed point that obeys scaling below the upper critical dimension $d_{uc}=4$. The exponents of this fixed point are given by the leading order terms of the $1/N$ expansion. In distinction to flat space no order $1/N$ corrections occur. We conclude that the description of many-particle systems in hyperbolic space is a promising avenue to investigate uniform frustration and non-trivial critical behavior within one theoretical approach.
The superfluid transition in liquid 4He filled in Gelsil glass observed in recent experiments is discussed in the framework of quantum critical phenomena. We show that quantum fluctuations of phase are indeed important at the experimentally studied temperature range owing to the small pore size of Gelsil, in contrast to 4He filled in previously studied porous media such as Vycor glass. As a consequence of an effective particle-hole symmetry, the quantum critical phenomena of the system are described by the 4D XY universality class, except at very low temperatures. The simple scaling agrees with the experimental data remarkably well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا