Do you want to publish a course? Click here

Valency of rare earths in RIn3 and RSn3: Ab initio analysis of electric-field gradients

77   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

In RIn3 and RSn3 the rare earth (R) is trivalent, except for Eu and Yb, which are divalent. This was experimentally determined in 1977 by perturbed angular correlation measurements of the electric-field gradient on a 111Cd impurity. At that time, the data were interpreted using a point charge model, which is now known to be unphysical and unreliable. This makes the valency determination potentially questionable. We revisit these data, and analyze them using ab initio calculations of the electric-field gradient. From these calculations, the physical mechanism that is responsible for the influence of the valency on the electric-field gradient is derived. A generally applicable scheme to interpret electric-field gradients is used, which in a transparent way correlates the size of the field gradient with chemical properties of the system.



rate research

Read More

The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.
We report the high-pressure synthesis of novel superconductor MgB$_2$ and some related compounds. The superconducting transition temperature of our samples of MgB$_2$ is equal to 36.6 K. The MgB$_2$ lattice parameters determined via X-ray diffraction are in excellent agreement with results of our ab initio calculations. The time-differential perturbed angular correlation (TDPAC) experiments demonstrate a small increase in quadrupole frequency of $^111$Cd probe with decreasing temperature from 293 to 4.2 K. The electric field gradient (EFG) at the B site calculated from first principles is in fair agreement with EFG obtained from $^11$B NMR spectra of MgB$_2$ reported in the literature. It is also very close to EFG found in our $^111$Cd TDPAC measurements, which suggests that the $^111$Cd probe substitutes for boron in the MgB$_2$ lattice.
135 - S. Jalali Asadabadi 2007
Electric field gradients (EFGs) were calculated for the $CeIn_3$ compound at both $^{115}In$ and $^{140}Ce$ sites. The calculations were performed within the density functional theory (DFT) using the augmented plane waves plus local orbital (APW+lo) method employing the so-called LDA+U scheme. The $CeIn_3$ compound were treated as nonmagnetic, ferromagnetic, and antiferromagnetic cases. Our result shows that the calculated EFGs are dominated at the $^{140}Ce$ site by the Ce-4f states. An approximately linear relation is intuited between the main component of the EFGs and total density of states (DOS) at Fermi level. The EFGs from our LDA+U calculations are in better agreement with experiment than previous EFG results, where appropriate correlations had not been taken into account among 4f-electrons. Our result indicates that correlations among 4f-electrons play an important role in this compound and must be taken into account.
We investigated the effect of spin polarization on the structural properties and gradient of electric field (EFG) on Sn, In, and Cd impurity in RSn$_3$ (R=Sm, Eu, Gd) and RIn$_3$ (R=Tm, Yb, Lu) compounds. The calculations were performed self-consistently using the scalar-relativistic full potential linearized augmented plane wave method. The local density approximations (LDA) and generalized gradient approximation without spin polarization (GGA) and with spin polarization (GGA+SP) to density functional theory were applied. In addition to that we performed some calculations within open core treatment (GGA+open core). It is clearly seen that GGA+SP is successful in predicting the larger lattice parameter and the dramatic drop of EFG for R=(Eu, Yb) relative to other rare earth compounds. This is an indication that spin splitting generated by spin polarization without any modification, is capable of treating properly the highly correlated f electrons in these systems.
111 - Paul Froese , Petr Navratil 2021
In any finite system, the presence of a non-zero permanent electric dipole moment (EDM) would indicate CP violation beyond the small violation predicted in the Standard Model. Here, we use the ab initio no-core shell model (NCSM) framework to theoretically investigate the magnitude of the nuclear EDM. We calculate EDMs of several light nuclei using chiral two- and three-body interactions and a PT-violating Hamiltonian based on a one-meson-exchange model. We present a benchmark calculation for $^3$He, as well as results for the more complex nuclei $^{6,7}$Li, $^9$Be, $^{10,11}$B, $^{13}$C, $^{14,15}$N, and $^{19}$F. Our results suggest that different nuclei can be used to probe different terms of the PT violating interaction. These calculations allow us to suggest which nuclei may be good candidates in the search for a measurable permanent electric dipole moment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا