Do you want to publish a course? Click here

Kinetics of Bose-Einstein condensation in a dimple potential

232   0   0.0 ( 0 )
 Added by Shovan Dutta
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight dimple whose depth can be controlled. Experimental investigations have found that such dimple traps provide an efficient means of achieving condensation. In our kinetic equations, we include two- and three-body processes. The two-body processes populate the dimple, and lead to loss when one of the colliding atoms is ejected from the trap. The three-body processes produce heating and loss. We explain the principal trends, give a detailed description of the dynamics, and provide quantitative predictions for timescales and condensate yields. From these simulations, we extract optimal parameters for future experiments.



rate research

Read More

We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the theoretical prediction for a uniform Bose gas. The momentum distribution of our non-condensed quantum-degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a matter-wave interference experiment. Our experiments open many new possibilities for fundamental studies of many-body physics.
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rapidly switched to a single harmonic trap of identical oscillation frequencies thus accelerating the two condensates towards each other. Furthermore, we show that time averaged potentials can be used as a means to control the radial confinement of the atoms. Manipulation of the radial confinement allows vortices and radial quadrupole oscillations to be excited.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10^5 atoms. This puts 84Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.
We report on the attainment of Bose-Einstein condensation of 86Sr. This isotope has a scattering length of about +800 a0 and thus suffers from fast three-body losses. To avoid detrimental atom loss, evaporative cooling is performed at low densities around 3x10^12 cm^-3 in a large volume optical dipole trap. We obtain almost pure condensates of 5x10^3 atoms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا