Do you want to publish a course? Click here

Apparent phase transitions in finite one-dimensional sine-Gordon lattices

81   0   0.0 ( 0 )
 Added by Angel Sanchez
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)], Langevin as well as Monte Carlo simulations strongly suggest the existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable size will exhibit this apparent phase transition at unexpectedly large temperatures.



rate research

Read More

We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flow is given by a variational formulation involving paths of the density and flow. We give sufficient conditions under which the large deviations of a given time averaged flow is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph.
Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.
In this paper, we study the probability distribution of the observable $s = (1/N)sum_{i=N-N+1}^N x_i$, with $1 leq N leq N$ and $x_1<x_2<cdots< x_N$ representing the ordered positions of $N$ particles in a $1d$ one-component plasma, i.e., $N$ harmonically confined charges on a line, with pairwise repulsive $1d$ Coulomb interaction $|x_i-x_j|$. This observable represents an example of a truncated linear statistics -- here the center of mass of the $N = kappa , N$ (with $0 < kappa leq 1$) rightmost particles. It interpolates between the position of the rightmost particle (in the limit $kappa to 0$) and the full center of mass (in the limit $kappa to 1$). We show that, for large $N$, $s$ fluctuates around its mean $langle s rangle$ and the typical fluctuations are Gaussian, of width $O(N^{-3/2})$. The atypical large fluctuations of $s$, for fixed $kappa$, are instead described by a large deviation form ${cal P}_{N, kappa}(s)simeq exp{left[-N^3 phi_kappa(s)right]}$, where the rate function $phi_kappa(s)$ is computed analytically. We show that $phi_{kappa}(s)$ takes different functional forms in five distinct regions in the $(kappa,s)$ plane separated by phase boundaries, thus leading to a rich phase diagram in the $(kappa,s)$ plane. Across all the phase boundaries the rate function $phi(kappa,s)$ undergoes a third-order phase transition. This rate function is also evaluated numerically using a sophisticated importance sampling method, and we find a perfect agreement with our analytical predictions.
137 - Weiguo Yin 2020
The Ising model, with short-range interactions between constituents, is a basic mathematical model in statistical mechanics. It has been widely used to describe collective phenomena such as order-disorder phase transitions in various physical, biological, economical, and social systems. However, it was proven that spontaneous phase transitions do not exist in the one-dimensional Ising models. Besides low dimensionality, frustration is the other well-known suppressor of phase transitions. Here I show that surprisingly, a strongly frustrated one-dimensional two-leg ladder Ising model can exhibit a marginal finite-temperature phase transition. It features a large latent heat, a sharp peak in specific heat, and unconventional order parameters, which classify the transition as involving an entropy-favored intermediate-temperature ordered state and further unveil a crossover to an exotic normal state in which frustration effectively decouples the two strongly interacted legs in a counterintuitive non-mean-field way. These exact results expose a mathematical structure that has not appeared before in phase-transition problems, and shed new light on our understanding of phase transitions and the dynamical actions of frustration. Applications of this model and its mechanisms to various systems with extensions to consider higher dimensions, quantum characters, or external fields, etc. are anticipated and briefly discussed---with insights into the puzzling phenomena of strange strong frustration and intermediate-temperature orders such as the Bozin-Billinge orbital-degeneracy-lifting recently discovered in real materials.
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of $phi^4$ models with either nearest-neighbours and mean-field interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا