Do you want to publish a course? Click here

Two-dimensional melting via sine-Gordon duality

81   0   0.0 ( 0 )
 Added by Zhengzheng Zhai
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.



rate research

Read More

103 - Angel Sanchez , 2000
We present a comparative numerical study of the ordered and the random two-dimensional sine-Gordon models on a lattice. We analytically compute the main features of the expected high temperature phase of both models, described by the Edwards-Wilkinson equation. We then use those results to locate the transition temperatures of both models in our Langevin dynamics simulations. We show that our results reconcile previous contradictory numerical works concerning the superroughening transition in the random sine-Gordon model. We also find evidence supporting the existence of two different low temperature phases for the disordered model. We discuss our results in view of the different analytical predictions available and comment on the nature of these two putative phases.
We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)], Langevin as well as Monte Carlo simulations strongly suggest the existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable size will exhibit this apparent phase transition at unexpectedly large temperatures.
111 - Niurka R. Quintero , 2000
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temperature. We find that the kink behavior is very similar to that obtained in the overdamped limit: There is a quadratic dependence on temperature in the diffusion coefficient that comes from the interaction among the kink and phonons, and the average value of the wave function increases with $sqrt{t}$ due to the variance of the centers of individual realizations and not due to kink distortions. These analytical results are fully confirmed by numerical simulations.
365 - Sang Il Lee , Sung Jong Lee 2010
We investigate the characteristics of two dimensional melting in simple atomic systems via isobaric-isothermal ($NPT$) and isochoric-isothermal ($NVT$) molecular dynamics simulations with special focus on the effect of the range of the potential on the melting. We find that the system with interatomic potential of longer range clearly exhibits a region (in the $PT$ plane) of (thermodynamically) stable hexatic phase. On the other hand, the one with shorter range potential exhibits a first-order melting transition both in $NPT$ and $NVT$ ensembles. Melting of the system with intermediate range potential shows a hexatic-like feature near the melting transition in $NVT$ ensemble, but it undergoes an unstable hexatic-like phase during melting process in $NPT$ ensemble, which implies existence of a weakly first order transition. The overall features represent a crossover from a continuous melting transition in the cases of longer-ranged potential to a discontinuous (first order) one in the systems with shorter and intermediate ranged potential. We also calculate the Binder cumulants as well as the susceptibility of the bond-orientational order parameter.
We study whether or not sine-Gordon kinks exhibit internal modes or ``quasimodes. By considering the response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor ``quasimodes exist in contrast to previous reports. However, we do identify a different kind of internal mode bifurcating from the bottom edge of the phonon band which arises from the discretization of the system in the numerical simulations, thus confirming recent predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا