No Arabic abstract
The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.
We analyze the gaps in the excitation spectrum of a Haldane chain with single-ion anisotropy in a staggered field. We show that the gap along the direction of the field increases at a faster rate than the others, while its spectral weight decreases, being transferred to a two-magnon continuum.
We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8$ as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N{e}el temperature of $T_Nsim5$ K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity $v(B)$ and a clear minimum of temperature $T(B)$ at $B^{c,3D}_perp=21.4$ T, indicating the suppression of the antiferromagnetic order. At higher fields, the $T(B)$ curve shows a broad minimum at $B^c_perp = 40$ T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr{u}neisen parameter $Gamma_B propto (B-B^{c}_perp)^{-1}$. By contrast, around the critical field, the Gr{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
Inelastic neutron scattering was used to measure the magnetic field dependence of spin excitations in the antiferromagnetic S=1/2 chain CuCl_2 2(dimethylsulfoxide) (CDC) in the presence of uniform and staggered fields. Dispersive bound states emerge from a zero-field two-spinon continuum with different finite energy minima at wave numbers q=pi and q_i approx pi (1-2<S_z>). The ratios of the field dependent excitation energies are in excellent agreement with predictions for breather and soliton solutions to the quantum sine-Gordon model, the proposed low-energy theory for S=1/2 chains in a staggered field. The data are also consistent with the predicted soliton and n=1,2 breather polarizations and scattering cross sections.
Field-induced magnetic ordering in the Haldane chain compound SrNi$_{2}$V$_{2}$O$_{8}$ and effect of anisotropy have been investigated using single crystals. Static susceptibility, inelastic neutron scattering, high-field magnetization, and low temperature heat-capacity studies confirm a non-magnetic spin-singlet ground state and a gap between the singlet ground state and triplet excited states. The intra-chain exchange interaction is estimated to be $J sim 8.9{pm}$0.1 meV. Splitting of the dispersions into two modes with minimum energies 1.57 and 2.58 meV confirms the existence of single-ion anisotropy $D(S^z){^2}$. The value of {it D} is estimated to be $-0.51{pm}0.01$ meV and the easy axis is found to be along the crystallographic {it c}-axis. Field-induced magnetic ordering has been found with two critical fields [$mu_0H_c^{perp c} = 12.0{pm}$0.2 T and $mu_0H_c^{parallel c} = 20.8{pm}$0.5 T at 4.2 K]. Field-induced three-dimensional magnetic ordering above the critical fields is evident from the heat-capacity, susceptibility, and high-field magnetization study. The Phase diagram in the {it H-T} plane has been obtained from the high-field magnetization. The observed results are discussed in the light of theoretical predictions as well as earlier experimental reports on Haldane chain compounds.
Frustrated magnets can exhibit many novel forms of order when exposed to high magnetic fields, however, much less is known about materials where frustration occurs in the presence of itinerant electrons. Here we report thermodynamic and transport measurements on micron-sized single crystals of the triangular-lattice metallic antiferromagnet 2H-AgNiO2, in magnetic fields of up to 90 T and temperatures down to 0.35 K. We observe a cascade of magnetic phase transitions at 13.5 20, 28 and 39T in fields applied along the easy axis, and we combine magnetic torque, specific heat and transport data to construct the field-temperature phase diagram. The results are discussed in the context of a frustrated easy-axis Heisenberg model for the localized moments where intermediate applied magnetic fields are predicted to stabilize a magnetic supersolid phase. Deviations in the measured phase diagram from this model predictions are attributed to the role played by the itinerant electrons.