Do you want to publish a course? Click here

Measuring Lateral Magnetic Structure in Thin Films Using Polarized Neutron Reflectometry

279   0   0.0 ( 0 )
 Added by Wai-Tung Hal Lee
 Publication date 2002
  fields Physics
and research's language is English
 Authors W.-T. Lee




Ask ChatGPT about the research

Polarized neutron reflectometry (PNR) has long been applied to measure the magnetic depth profile of thin films. In recent years, interest has increased in observing lateral magnetic structures in a film. While magnetic arrays patterned by lithography and submicron-sized magnetic domains in thin films often give rise to off-specular reflections, micron-sized ferromagnetic domains on a thin film produce few off-specular reflections and the domain distribution information is contained within the specular reflection. In this paper, we will first present some preliminary results of off-specular reflectivity from arrays of micron-sized permalloy rectangular bars. We will then use specular reflections to study the domain dispersion of an exchange-biased Co/CoO bilayer at different locations of the hysteresis loop.



rate research

Read More

The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measurement of its strength is indispensable. In this work, we present a review of the state of the art of measuring the coefficient $D$ of the Dzyaloshinskii-Moriya interaction, the DMI constant, focusing on systems where the interaction arises from the interface between two materials. The measurement techniques are divided into three categories: a) domain wall based measurements, b) spin wave based measurements and c) spin orbit torque based measurements. We give an overview of the experimental techniques as well as their theoretical background and models for the quantification of the DMI constant $D$. We analyze the advantages and disadvantages of each method and compare $D$ values in different stacks. The review aims to obtain a better understanding of the applicability of the different techniques to different stacks and of the origin of apparent disagreement of literature values.
We studied the depth dependent magnetization profile of the magnetostrictive Co thin film layer in a PMN-PT (011)/Ta/Co/Ta structure under both zero and nonzero applied electric field using polarized neutron reflectometry. Application of electric field across the PMN-PT substrate generates a strain, which rotates the magnetization of the Co layer consistent with the Villari effect. At low magnetic fields (near remanence and coercive field conditions), we find that the depth dependent magnetization profile is non-uniform, under both zero and nonzero applied electric fields. These variations are attributable to the depth dependent strain profile in the Co film, as determined by finite element analysis simulations.
We describe a new sensitive method for the investigation of weakly magnetic films placed inside a tri-layer planar waveguide. Polarized neutrons tunnel into the waveguide through the surface, channel along the layers and are emitted from the end face as a narrow and slightly divergent microbeam. Polarization analysis permits to detect very small magnetization in the order of a few 10 Gauss. The magnetic film containing the rare-earth element Tb was investigated using both fixed wavelength and time-of-flight polarized neutron reflectometers. The experimental results are presented and discussed.
We explored changes in magnetic domain structures in a magnetic layer due to the onset of the superconductivity of an adjacent superconductive layer using neutron reflectometry. Magnetic domain structures in 1~$mu$m thick permalloy (Py) films were studied as functions of magnetic field, temperature and under the influence of the onset of superconductivity in a neighboring layer. Bragg peaks in the off-specular scattering were observed at low fields following saturation with an in-plane field, which are attributed to the quasi-parallel magnetic stripes along the field direction. During the magnetization reversal from saturation, the stripe pattern shows increases in the period, the transverse coherence length (textit{i.e.}, perpendicular to the stripes) and the amplitude of the out-of-plane magnetization component. The coherence length of the magnetic stripes is anisotropic in the remnant state with the longitudinal coherence length (textit{i.e.}, along the stripes) being larger than the transverse one. The stripe period shows a weak temperature dependence between 300~K and 3~K, but no abrupt change in the period is observed when the temperature crosses the superconducting critical temperature.
We report a synthesis route to grow iron nitride thin films with giant saturation magnetization (Ms) through an N inter-diffusion process. By post annealing Fe/Fe-N structured films grown on GaAs(001) substrates, nitrogen diffuses from the over-doped amorphous-like Fe-N layer into strained crystalline Fe layer and facilitates the development of metastable Fe16N2 phase. As explored by polarized neutron reflectometry, the depth-dependent Ms profile can be well described by a model with the presence of a giant Ms up to 2360 emu/cm3 at near-substrate interface, corresponding to the strained regions of these annealed films. This is much larger than the currently known limit (Fe65Co35 with Ms sim 1900 emu/cm3). The present synthesis method can be used to develop writer materials for future magnetic recording application.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا