No Arabic abstract
Scanning tunneling spectroscopy of the high-Tc superconductor Bi2Sr2CaCu2O8+d reveals weak, incommensurate, spatial modulations in the tunneling conductance. Images of these energy-dependent modulations are Fourier analyzed to yield the dispersion of their wavevectors. Comparison of the dispersions with photoemission spectroscopy data indicates that quasiparticle interference, due to elastic scattering between characteristic regions of momentum-space, provides a consistent explanation for the conductance modulations, without appeal to another order parameter. These results refocus attention on quasiparticle scattering processes as potential explanations for other incommensurate phenomena in the cuprates. The momentum-resolved tunneling spectroscopy demonstrated here also provides a new technique with which to study quasiparticles in correlated materials.
The superconducting state is achieved by the condensation of Cooper pairs and is protected by the superconducting gap. The pairing interaction between the two electrons of a Cooper pair determines the superconducting gap function. Thus, it is very pivotal to detect the gap structure for understanding the mechanism of superconductivity. In cuprate superconductors, it has been well established that the superconducting gap may have a d-wave function {Delta} = {Delta}_0cos2{theta}. This gap function has an alternative sign change by every pi/2 in the momentum space when the in-plane azimuthal angle theta is scanned. It is very hard to visualize this sign change. Early experiments for recommending or proving this d-wave gap function were accomplished by the specially designed phase sensitive measurements based on the Josephson effect. Here we report the measurements of scanning tunneling spectroscopy in one of the model cuprate system Bi2Sr2CaCu2O8+{delta} and conduct the analysis of phase-referenced quasiparticle interference (QPI). Due to the unique quasiparticle excitations in the superconducting state of cuprate, we have seen the seven basic scattering vectors that connect each pair of the terminals of the banana-shaped contour of constant quasiparticle energy (CCE). The phase-referenced QPI clearly visualizes the sign change of the d-wave gap. Our results illustrate a very effective way for determining the sign change of unconventional superconductors.
Scanning tunneling microscopy is used to image the additional quasiparticle states generated by quantized vortices in the high-Tc superconductor Bi2Sr2CaCu2O8+d. They exhibit a Cu-O bond oriented checkerboard pattern, with four unit cell (4a0) periodicity and a ~30 angstrom decay length. These electronic modulations may be related to the magnetic field-induced, 8a0 periodic, spin density modulations of decay length ~70 angstroms recently discovered in La1.84Sr0.16CuO4. The proposed explanation is a spin density wave localized surrounding each vortex core. General theoretical principles predict that, in the cuprates, a localized spin modulation of wavelength L should be associated with a corresponding electronic modulation of wavelength L/2, in good agreement with our observations.
Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-changed s-wave $cos(k_x)cdotcos(k_y)$ and sign-unchanged $|cos(k_x)cdotcos(k_y)|$ SC states. While the patterns strongly depend on the chosen band structures, the sensitivity of peaks around $(pmpi,0)$ and $(0,pmpi)$ wavevectors on magnetic or non-magnetic impurity, and sign change or sign unchanged SC orders is common in two models. Our results strongly suggest that QPI may provide direct information of band structures and evidence of the pairing symmetry in the SC states.
A new low photon energy regime of angle resolved photoemission spectroscopy is accessed with lasers and used to study the superconductor Bi2Sr2CaCu2O8+delta. The low energy increases bulk sensitivity, reduces background, and improves resolution. With this we observe spectral peaks which are sharp on the scale of their binding energy - the clearest evidence yet for quasiparticles in the normal state. Crucial aspects of the data such as the dispersion, superconducting gaps, and the bosonic coupling kink and associated weight transfer are robust to a possible breakdown of the sudden approximation.
The cuprate high-temperature superconductors are known to host a wide array of effects due to interactions and disorder. In this work, we look at some of the consequences of these effects which can be visualized by scanning tunneling spectroscopy. These interaction and disorder effects can be incorporated into a mean-field description by means of a self-energy appearing in the Greens function. We first examine the quasiparticle scattering interference spectra in the superconducting state at optimal doping as temperature is increased. Assuming agreement with angle-resolved photoemission experiments which suggest that the scattering rate depends on temperature, resulting in the filling of the $d$-wave gap, we find that the peaks predicted by the octet model become progressively smeared as temperature is increased. When the scattering rate is of the same order of magnitude as the superconducting gap, the spectral function shows Fermi-arc-like patterns, while the power spectrum of the local density of states shows the destruction of the octet-model peaks. We next consider the normal state properties of the optimally-doped cuprates. We model this by adding a marginal Fermi liquid self-energy to the normal-state propagator, and consider the dependence of the QPI spectra on frequency, temperature, and doping. We demonstrate that the MFL self-energy leads to a smearing of the caustics appearing in the normal-state QPI power spectrum as either temperature or frequency is increased at fixed doping. The smearing is found to be more prominent in the MFL case than in an ordinary Fermi liquid. We also consider the case of a marginal Fermi liquid with a strongly momentum-dependent self-energy which gives rise to a visible nodal-antinodal dichotomy at the normal state, and discuss how the spectra as seen in ARPES and STS differ from both an isotropic metal and a broadened $d$-wave superconductor.