Do you want to publish a course? Click here

Search for Direct Stress Correlation Signatures of the Critical Earthquake Model

151   0   0.0 ( 0 )
 Added by Sornette
 Publication date 2002
  fields Physics
and research's language is English
 Authors G. Ouillon




Ask ChatGPT about the research

We propose a new test of the critical earthquake model based on the hypothesis that precursory earthquakes are ``actors that create fluctuations in the stress field which exhibit an increasing correlation length as the critical large event becomes imminent. Our approach constitutes an attempt to build a more physically-based cumulative function in the spirit of but improving on the cumulative Benioff strain used in previous works documenting the phenomenon of accelerated seismicity. Using a space and time dependent visco-elastic Green function in a two-layer model of the Earth lithosphere, we compute the spatio-temporal stress fluctuations induced by every earthquake precursor and estimate, through an appropriate wavelet transform, the contribution of each event to the correlation properties of the stress field around the location of the main shock at different scales. Our physically-based definition of the cumulative stress function adding up the contribution of stress loads by all earthquakes preceding a main shock seems to be unable to reproduce an acceleration of the cumulative stress nor an increase of the stress correlation length similar to those observed previously for the cumulative Benioff strain. Either earthquakes are ``witnesses of large scale tectonic organization and/or the triggering Green function requires much more than just visco-elastic stress transfers.



rate research

Read More

We test the concept that seismicity prior to a large earthquake can be understood in terms of the statistical physics of a critical phase transition. In this model, the cumulative seismic strain release increases as a power-law time-to-failure before the final event. Furthermore, the region of correlated seismicity predicted by this model is much greater than would be predicted from simple elasto-dynamic interactions. We present a systematic procedure to test for the accelerating seismicity predicted by the critical point model and to identify the region approaching criticality, based on a comparison between the observed cumulative energy (Benioff strain) release and the power-law behavior predicted by theory. This method is used to find the critical region before all earthquakes along the San Andreas system since 1950 with M 6.5. The statistical significance of our results is assessed by performing the same procedure on a large number of randomly generated synthetic catalogs. The null hypothesis, that the observed acceleration in all these earthquakes could result from spurious patterns generated by our procedure in purely random catalogs, is rejected with 99.5% confidence. An empirical relation between the logarithm of the critical region radius (R) and the magnitude of the final event (M) is found, such that log R mu 0.5 M, suggesting that the largest probable event in a given region scales with the size of the regional fault network.
139 - S.L.A. de Queiroz 2004
We study the probability distributions of interface roughness, sampled among successive equilibrium configurations of a single-interface model used for the description of Barkhausen noise in disordered magnets, in space dimensionalities $d=2$ and 3. The influence of a self-regulating (demagnetization) mechanism is investigated, and evidence is given to show that it is irrelevant, which implies that the model belongs to the Edwards-Wilkinson universality class. We attempt to fit our data to the class of roughness distributions associated to $1/f^alpha$ noise. Periodic, free, ``window, and mixed boundary conditions are examined, with rather distinct results as regards quality of fits to $1/f^alpha$ distributions.
87 - O.M. Braun , E. Tosatti 2016
Inspired by spring-block models, we elaborate a minimal physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our new point is to demonstrate that the simultaneous incorporation of ageing of contacts in the sliding interface and of elasticity of the sliding plates constitute the minimal ingredients to account for both laws within the same frictional model.
114 - J. Kaupuzs 2015
Critical two-point correlation functions in the continuous and lattice phi^4 models with scalar order parameter phi are considered. We show by different non-perturbative methods that the critical correlation functions <phi^n(0) phi^m(x)> are proportional to <phi(0) phi(x)> at |x| --> infinity for any positive odd integers n and m. We investigate how our results and some other results for well-defined models can be related to the conformal field theory (CFT), considered by Rychkov and Tan, and reveal some problems here. We find this CFT to be rather formal, as it is based on an ill-defined model. Moreover, we find it very unlikely that the used there equation of motion really holds from the point of view of statistical physics.
We report new tests of the critical earthquake concepts performed on rockbursts in deep South African mines. We extend the concept of an optimal time and space correlation region and test it on the eight main shocks of our catalog provided by ISSI. In a first test, we use the simplest signature of criticality in terms of a power law time-to-failure formula. Notwithstanding the fact that the search for the optimal correlation size is performed with this simple power law, we find evidence both for accelerated seismicity and for the presence of logperiodic behavior with a prefered scaling factor close to 2. We then propose a new algorithm based on a space and time smoothing procedure, which is also intended to account for the finite range and time mechanical interactions between events. This new algorithm provides a much more robust and efficient construction of the optimal correlation region, which allows us the use of the logperiodic formula directly in the search process. In this preliminary work, we have only tested the new algorithm on the largest event on the catalog. The result is of remarkable good quality with a dramatic improvement in accuracy and robustness. This confirms the potential importance of logperiodic signals. Our study opens the road for an efficient implemention of a systematic testing procedure of real-time predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا