Do you want to publish a course? Click here

Method for direct observation of coherent quantum oscillations in a superconducting phase qubit

292   0   0.0 ( 0 )
 Added by Miroslav Grajcar
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-domain observations of coherent oscillations between quantum states in mesoscopic superconducting systems were so far restricted to restoring the time-dependent probability distribution from the readout statistics. We propose a new method for direct observation of Rabi oscillations in a phase qubit. The external source, typically in GHz range, induces transitions between the qubit levels. The resulting Rabi oscillations of supercurrent in the qubit loop are detected by a high quality resonant tank circuit, inductively coupled to the phase qubit. Detailed calculation for zero and non-zero temperature are made for the case of persistent current qubit. According to the estimates for dephasing and relaxation times, the effect can be detected using conventional rf circuitry, with Rabi frequency in MHz range.



rate research

Read More

We experimentally demonstrate the coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable via the amplitude of the flux pulse. The demonstrated operation mode allows to realize quantum gates which take less than 100 ps time and are thus much faster compared to other superconducting qubits. An other advantage of this type of qubit is its insensitivity to both thermal and magnetic field fluctuations.
Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant perturbation, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently [N. Gronbech-Jensen and M. Cirillo, Phys. Rev. Lett. 95, 067001 (2005)] that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effect. First, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency (multiphoton processes), the classical effect also exists when the system is excited at the overtones. Second, the shape of the resonance is, in the classical case, characteristically asymmetric; while quantum resonances are described by symmetric Lorentzians. Third, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow to confidently distinguish the bona fide Rabi oscillations from their classical Doppelganger.
We present a systematic study of the phase-coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching DC SQUID method. In this scheme the DC SQUID bias current pulse is applied via a capacitor instead of a resistor, giving rise to a narrow band-pass instead of a pure low-pass filter configuration of the electromagnetic environment. Measuring one and the same qubit with both setups allows a direct comparison. With the capacitive method about four times faster switching pulses and an increased visibility are achieved. Furthermore, the deliberate engineering of the electromagnetic environment, which minimizes the noise due to the bias circuit, is facilitated. Right at the degeneracy point the qubit coherence is limited by energy relaxation. We find two main noise contributions. White noise is limiting the energy relaxation and contributing to the dephasing far from the degeneracy point. 1/f-noise is the dominant source of dephasing in the direct vicinity of the optimal point. The influence of 1/f-noise is also supported by non-random beatings in the Ramsey and spin echo decay traces. Numeric simulations of a coupled qubit-oscillator system indicate that these beatings are due to the resonant interaction of the qubit with at least one point-like fluctuator, coupled especially strongly to the qubit.
Rabi oscillations have been observed in many superconducting devices, and represent prototypical logic operations for quantum bits (qubits) in a quantum computer. We use a three-level multiphoton analysis to understand the behavior of the superconducting phase qubit (current-biased Josephson junction) at high microwave drive power. Analytical and numerical results for the ac Stark shift, single-photon Rabi frequency, and two-photon Rabi frequency are compared to measurements made on a dc SQUID phase qubit with Nb/AlOx/Nb tunnel junctions. Good agreement is found between theory and experiment.
We review our recent measurements of the complex AC conductivity of thin InO_x films studied as a function of magnetic field through the nominal 2D superconductor-insulator transition. These measurements - the first of their type to probe nonzero frequency - reveals a significant finite frequency superfluid stiffness well into the insulating regime. Unlike conventional fluctuation superconductivity in which thermal fluctuations give a superconducting response in regions of parameter space that dont exhibit long range order, these fluctuations are temperature independent as T --> 0 and are exhibited in samples where the resistance is large (greater than 10^6 Ohms/Square) and strongly diverging. We interpret this as the direct observation of quantum superconducting fluctuations around an insulating ground state. This system serves as a prototype for other insulating states of matter that derive from superconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا