Do you want to publish a course? Click here

Heavy quasiparticles in the ferromagnetic superconductor ZrZn2

126   0   0.0 ( 0 )
 Added by Stephen Hayden
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a study of the de Haas-van Alphen effect in the normal state of the ferromagnetic superconductor ZrZn2. Our results are generally consistent with an LMTO band structure calculation which predicts four exchange-split Fermi surface sheets. Quasiparticle effective masses are enhanced by a factor of about 4.9 implying a strong coupling to magnetic excitations or phonons. Our measurements provide insight in to the mechanism for superconductivity and unusual thermodynamic properties of ZrZn2.

rate research

Read More

The superconducting order parameter of the first heavy-fermion superconductor CeCu2Si2 is currently under debate. A key ingredient to understand its superconductivity and physical properties is the quasiparticle dispersion and Fermi surface, which remains elusive experimentally. Here we present measurements from angle-resolved photoemission spectroscopy. Our results emphasize the key role played by the Ce 4f electrons for the low-temperature Fermi surface, highlighting a band-dependent conduction-f electron hybridization. In particular, we find a very heavy quasi-two-dimensional electron band near the bulk X point and moderately heavy three-dimensional hole pockets near the Z point. Comparison with theoretical calculations reveals the strong local correlation in this compound, calling for further theoretical studies. Our results provide the electronic basis to understand the heavy fermion behavior and superconductivity; implications for the enigmatic superconductivity of this compound are also discussed.
We have directly measured quasiparticle number fluctuations in a thin film superconducting Al resonator in thermal equilibrium. The spectrum of these fluctuations provides a measure of both the density and the lifetime of the quasiparticles. We observe that the quasiparticle density decreases exponentially with decreasing temperature, as theoretically predicted, but saturates below 160 mK to 25-55 per cubic micron. We show that this saturation is consistent with the measured saturation in the quasiparticle lifetime, which also explains similar observations in qubit decoherence times.
Experimentally and mysteriously, the concentration of quasiparticles in a gapped superconductor at low temperatures always by far exceeds its equilibrium value. We study the dynamics of localized quasiparticles in superconductors with a spatially fluctuating gap edge. The competition between phonon-induced quasiparticle recombination and generation by a weak non-equilibrium agent results in an upper bound for the concentration that explains the mystery.
We investigate the low temperature (T $<$ 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (T$_c$ = 2.3 K) by angle-resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f-electrons, which ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the Periodic Anderson Model (PAM) is used to describe the data, resulting in semi-quantitative agreement with previous bulk sensitive results from de-Haas-van-Alphen measurements.
Quasiparticle transport in the vortex state of an s-wave superconductor at T -> 0 was investigated by measuring the thermal conductivity of LuNi_2B_2C down to 70 mK in a magnetic field perpendicular to the heat current. In zero field, there is no electronic conduction, as expected for a superconducting gap without nodes. However, as soon as vortices enter the sample quasiparticles are seen to conduct remarkably well, even better than they would in a typical d-wave superconductor. This is in stark conflict with the widely held view that quasiparticle states in s-wave superconductors just above H_{c1} should be localized and bound to the vortex core.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا