Do you want to publish a course? Click here

Band dependent emergence of heavy quasiparticles in CeCoIn5

196   0   0.0 ( 0 )
 Added by A. Koitzsch
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the low temperature (T $<$ 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (T$_c$ = 2.3 K) by angle-resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f-electrons, which ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the Periodic Anderson Model (PAM) is used to describe the data, resulting in semi-quantitative agreement with previous bulk sensitive results from de-Haas-van-Alphen measurements.



rate research

Read More

Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of unsolved problems in all of physics. Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares many of the characteristics of correlated d-electron high-Tc cuprate and pnictide superconductors, including the competition between antiferromagnetism and superconductivity. While there has been evidence for unconventional pairing in this compound, high-resolution spectroscopic measurements of the superconducting state have been lacking. Previously, we have used high-resolution scanning tunneling microscopy techniques to visualize the emergence of heavy-fermion excitations in CeCoIn5 and demonstrate the composite nature of these excitations well above Tc. Here we extend these techniques to much lower temperatures to investigate how superconductivity develops within a strongly correlated band of composite excitations. We find the spectrum of heavy excitations to be strongly modified just prior to the onset of superconductivity by a suppression of the spectral weight near the Fermi energy, reminiscent of the pseudogap state in the cuprates. By measuring the response of superconductivity to various perturbations, through both quasiparticle interference and local pair-breaking experiments, we demonstrate the nodal d-wave character of superconducting pairing in CeCoIn5.
Using small-angle neutron scattering, we have studied the flux-line lattice (FLL) in superconducting CeCoIn5. The FLL is found to undergo a first-order symmetry and reorientation transition at ~0.55 T at 50 mK. The FLL form factor in this material is found to be independent of the applied magnetic field, in striking contrast to the exponential decrease usually observed in superconductors. This result is consistent with a strongly field-dependent coherence length in CeCoIn5, in agreement with recent theoretical predictions for superclean, high-kappa superconductors.
We investigate the properties of the coexistence phase of itinerant antiferromagnetism and nodal $d$-wave superconductivity (Q-phase) discovered in heavy fermion CeCoIn5 under applied magnetic field. We solve the minimal model that includes $d$-wave superconductivity and underlying magnetic correlations in real space to elucidate the structure of the $Q$-phase in the presence of an externally applied magnetic field. We further focus on the role of magnetic impurities, and show that they nucleate the Q-phase at lower magnetic fields. Our most crucial finding is that, even at zero applied field, dilute magnetic impurities cooperate via RKKY-like exchange interactions to generate a long-range ordered coexistence state identical to the Q-phase. This result is in agreement with recent neutron scattering measurements [S. Raymond et al., J. Phys. Soc. Jpn. {bf 83}, 013707 (2014)].
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands $E_k^{alpha,beta}$ with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.
Angle resolved photoemission spectroscopy of Ba(Fe1-xCox)2As2 (x = 0.06, 0.14, and 0.24) shows that the width of the Fe 3d yz/zx hole band depends on the doping level. In contrast, the Fe 3d x^2-y^2 and 3z^2-r^2 bands are rigid and shifted by the Co doping. The Fe 3d yz/zx hole band is flattened at the optimal doping level x = 0.06, indicating that the band renormalization of the Fe 3d yz/zx band correlates with the enhancement of the superconducting transition temperature. The orbital-dependent and doping-dependent band renormalization indicates that the fluctuations responsible for the superconductivity is deeply related to the Fe 3d orbital degeneracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا